The serotonin 5-HT receptor (5-HTR) and 5-HTR localize to the brain and share overlapping signal transduction facets that contribute to their roles in cognition, mood, learning, and memory. Achieving selective targeting of these receptors is challenged by the similarity in their 5-HT orthosteric binding pockets. A fragment-based discovery approach was employed to design and synthesize novel oleamide analogues as selective 5-HTR or dual 5-HTR/5-HTR positive allosteric modulators (PAMs).
View Article and Find Full Text PDFBromodomain-containing protein 4 (BRD4) is an emerging epigenetic drug target for intractable inflammatory disorders. The lack of highly selective inhibitors among BRD4 family members has stalled the collective understanding of this critical system and the progress toward clinical development of effective therapeutics. Here we report the discovery of a potent BRD4 bromodomain 1 (BD1)-selective inhibitor ZL0590 () targeting a unique, previously unreported binding site, while exhibiting significant anti-inflammatory activities and .
View Article and Find Full Text PDFCanonical WNT signaling is an important developmental pathway that has attracted increased attention for anticancer drug discovery. From the production and secretion of WNT ligands, their binding to membrane receptors, and the β-catenin destruction complex to the expansive β-catenin transcriptional complex, multiple components have been investigated as drug targets to modulate WNT signaling. Significant progress in developing WNT inhibitors such as porcupine inhibitors, tankyrase inhibitors, β-catenin/coactivators, protein-protein interaction inhibitors, casein kinase modulators, DVL inhibitors, and dCTPP1 inhibitors has been made, with several candidates (, LGK-974, PRI-724, and ETC-159) in human clinical trials.
View Article and Find Full Text PDFHuman adenoviruses (HAdVs) display a wide range of tissue tropism and can cause an array of symptoms from mild respiratory illnesses to disseminated and life-threatening infections in immunocompromised individuals. However, no antiviral drug has been approved specifically for the treatment of HAdV infections. Herein, we report our continued efforts to optimize salicylamide derivatives and discover compound (JMX0493) as a potent inhibitor of HAdV infection.
View Article and Find Full Text PDFThis study sought to determine breast arterial calcification (BAC) prevalence in a primary care setting and its potential use in guiding further cardiovascular workup. A radiologist reviewed 282 consecutive mammograms. Characteristics of BAC-positive and negative women were compared.
View Article and Find Full Text PDFThe sigma-1 (σ) receptor, an enigmatic protein originally classified as an opioid receptor subtype, is now understood to possess unique structural and functional features of its own and play critical roles to widely impact signaling transduction by interacting with receptors, ion channels, lipids, and kinases. The σ receptor is implicated in modulating learning, memory, emotion, sensory systems, neuronal development, and cognition and accordingly is now an actively pursued drug target for various neurological and neuropsychiatric disorders. Evaluation of the five selective σ receptor drug candidates (pridopidine, ANAVEX2-73, SA4503, S1RA, and T-817MA) that have entered clinical trials has shown that reaching clinical approval remains an evasive and important goal.
View Article and Find Full Text PDFTargeting the serotonin (5-HT) 5-HT receptor (5-HTR) allosteric site to potentiate endogenous 5-HT tone may provide novel therapeutics to alleviate the impact of costly, chronic diseases such as obesity and substance use disorders. Expanding upon our recently described 5-HTR-positive allosteric modulators (PAMs) based on the 4-alkylpiperidine-2-carboxamide scaffold, we optimized the undecyl moiety at the 4-position with variations of cyclohexyl- or phenyl-containing fragments to reduce rotatable bonds and lipophilicity. Compound (CTW0415) was discovered as a 5-HTR PAM with improved pharmacokinetics and reduced off-target interactions relative to our previous series of molecules.
View Article and Find Full Text PDFBromodomain-containing protein 4 (BRD4) represents a promising drug target for anti-inflammatory therapeutics. Herein, we report the design, synthesis, and pharmacological evaluation of novel chromone derivatives via scaffold hopping to discover a new class of orally bioavailable BRD4-selective inhibitors. Two potent BRD4 bromodomain 1 (BD1)-selective inhibitors (ZL0513) and (ZL0516) have been discovered with high binding affinity (IC values of 67-84 nM) and good selectivity over other BRD family proteins and distant BD-containing proteins.
View Article and Find Full Text PDFSerotonin (5-HT) 5-HT2C receptor (5-HT2CR) is recognized as a critical mediator of diseaserelated pathways and behaviors based upon actions in the central nervous system (CNS). Since 5-HT2CR is a class A G protein-coupled receptor (GPCR), drug discovery efforts have traditionally pursued the activation of the receptor through synthetic ligands with agonists proposed for the treatment of obesity, substance use disorders and impulse control disorders while antagonists may add value for the treatment of anxiety, depression and schizophrenia. The most significant agonist discovery to date is the FDAapproved anti-obesity medication lorcaserin.
View Article and Find Full Text PDFIn an effort to develop novel Bax activators for breast cancer treatment, a series of diverse analogues have been designed and synthesized based on lead compound SMBA1 through several strategies, including introducing various alkylamino side chains to have a deeper access to S184 pocket, replacing carbon atoms with nitrogen, and reducing the nitro group of 9H-fluorene scaffold. Compounds 14 (CYD-2-11) and 49 (CYD-4-61) have been identified to exhibit significantly improved antiproliferative activity compared to SMBA1, with IC values of 3.22 μM and 0.
View Article and Find Full Text PDFCurr Top Med Chem
September 2019
Chemical reactions that can proceed in living systems while not interfering with native biochemical processes are collectively referred to as bioorthogonal chemistry. Selectivity, efficiency, and aqueous compatibility are three significant characteristics of an ideal bioorthogonal reaction. To date, the specialized bioorthogonal reactions that have been reported include: Cu (I)-catalyzed [3 + 2] azido- alkyne cycloadditions (CuAAC), strain-promoted [3 + 2] azide-alkyne cycloadditions (SPAAC), Staudinger ligation, photo-click 1,3-dipolar cycloadditions, strain-promoted alkyne-nitrone cycloadditions (SPANC), transition metal catalysis (TMC), and inverse electron demand Diels-Alder (IEDDA).
View Article and Find Full Text PDFAlthough G protein-coupled receptors (GPCRs) are recognized as pivotal drug targets involved in multiple physiological and pathological processes, the majority of GPCRs including orphan GPCRs (oGPCRs) are unexploited. GPR88, a brain-specific oGPCR with particularly robust expression in the striatum, regulates diverse brain and behavioral functions, including cognition, mood, movement control, and reward-based learning, and is thus emerging as a novel drug target for central nervous system disorders including schizophrenia, Parkinson's disease, anxiety, and addiction. Nevertheless, no effective GPR88 synthetic ligands have yet entered into clinical trials, and GPR88 endogenous ligands remain unknown.
View Article and Find Full Text PDFG-protein-coupled receptors (GPCRs) have been tractable drug targets for decades with over one-third of currently marketed drugs targeting GPCRs. Of these, the class A GPCR superfamily is highly represented, and continued drug discovery for this family of receptors may provide novel therapeutics for a vast range of diseases. GPCR allosteric modulation is an innovative targeting approach that broadens the available small molecule toolbox and is proving to be a viable drug discovery strategy, as evidenced by recent FDA approvals and clinical trials.
View Article and Find Full Text PDFAn impaired signaling capacity of the serotonin (5-HT) 5-HT receptor (5-HTR) has been implicated in the neurobehavioral processes that promote relapse vulnerability in cocaine use disorder (CUD). Restoration of the diminished 5-HTR signaling through positive allosteric modulation presents a novel therapeutic approach. Several new molecules with the 4-alkylpiperidine-2-carboxamide scaffold were designed, synthesized, and pharmacologically evaluated, leading to the discovery of selective 5-HTR positive allosteric modulators (PAMs).
View Article and Find Full Text PDFCovalent drug discovery has undergone a resurgence in recent years due to comprehensive optimization of the structure-activity relationship (SAR) and the structure-reactivity relationship (SRR) for covalent drug candidates. The natural product oridonin maintains an impressive pharmacological profile through its covalent enone warhead on the D-ring and has attracted substantial SAR studies to characterize its potential in the development of new molecular entities for the treatment of various human cancers and inflammation. Herein, for the first time, we report the excessive reactivity of this covalent warhead and mediation of the covalent binding capability through a Rh(esp)-catalyzed mild and concise regio- and stereospecific aziridination approach.
View Article and Find Full Text PDFOridonin, a diterpenoid natural product commonly used in East Asian herbal medicine, is garnering increased attention in the biomedical community due to its extensive biological activities that include antitumor, anti-inflammatory, antimicrobial, hepatic fibrosis prevention, and neurological effects. Over the past decade, significant progress has been made in structure activity relationship and mechanism of action studies of oridonin for the treatment of cancer and other diseases. This review provides a brief summary on oridonin and its analogs in cancer drug discovery and antiinflammation and highlights its emerging therapeutic potential in neuroprotection applications.
View Article and Find Full Text PDFBRD4, the most extensively studied member of the BET family, is an epigenetic regulator that localizes to DNA via binding to acetylated histones and controls the expression of therapeutically important gene regulatory networks through the recruitment of transcription factors to form mediator complexes, phosphorylating RNA polymerase II, and by its intrinsic histone acetyltransferase activity. Disrupting the protein-protein interactions between BRD4 and acetyl-lysine has been shown to effectively block cell proliferation in cancer, cytokine production in acute inflammation, and so forth. To date, significant efforts have been devoted to the development of BRD4 inhibitors, and consequently, a dozen have progressed to human clinical trials.
View Article and Find Full Text PDFAntiviral therapeutics with profiles of high potency, low resistance, panserotype, and low toxicity remain challenging, and obtaining such agents continues to be an active area of therapeutic development. Due to their unique three-dimensional structural features, spirooxindoles have been identified as privileged chemotypes for antiviral drug development. Among them, spiro-pyrazolopyridone oxindoles have been recently reported as potent inhibitors of dengue virus NS4B, leading to the discovery of an orally bioavailable preclinical candidate (R)-44 with excellent in vivo efficacy in a dengue viremia mouse model.
View Article and Find Full Text PDFEur J Med Chem
October 2016
Natural products have historically been, and continue to be, an invaluable source for the discovery of various therapeutic agents. Oridonin, a natural diterpenoid widely applied in traditional Chinese medicines, exhibits a broad range of biological effects including anticancer and anti-inflammatory activities. To further improve its potency, aqueous solubility and bioavailability, the oridonin template serves as an exciting platform for drug discovery to yield better candidates with unique targets and enhanced drug properties.
View Article and Find Full Text PDFOverexpression of B cell lymphoma 2 (Bcl-2) proteins is associated with therapy resistance in various human cancers. Traditional approaches target the Bcl-2 homology (BH)3 domain of Bcl-2; however, the BH4 domain represents a superior therapeutic target in light of its unique structure and crucial involvement in many cellular functions. In this critical review, we focus on the structural and functional basis of targeting the BH4 domain of Bcl-2, and highlight the recent advances in drug discovery efforts toward small-molecule BH4 domain inhibitors (e.
View Article and Find Full Text PDFBackground: The tumor microenvironment plays an important role in the progression of cancer by mediating stromal-epithelial paracrine signaling, which can aberrantly modulate cellular proliferation and tumorigenesis. Exposure to environmental toxicants, such as inorganic arsenic (iAs), has also been implicated in the progression of prostate cancer.
Objective: The role of iAs exposure in stromal signaling in the tumor microenvironment has been largely unexplored.
Objectives: Reporting of clinically significant events represents an important mechanism by which patient safety problems may be identified and corrected. However, time pressure and cumbersome report entry procedures have discouraged the full participation of physicians. To improve the process, our internal medicine training program developed an easy-to-use mobile platform that combines the reporting process with patient sign-out.
View Article and Find Full Text PDF