Mixed fatty acid-modified aggregators have been developed as potential crude oil sorbents. Cheap pine wood flour was first modified with oleic acid (OA) and further modified with a second fatty acid by a leaving group chemistry, where a surface hydroxyl group is first replaced by -toluenesulfonyl group and a fatty acid forms a covalent bond on sawdust surface through esterification at the elevated temperature (55 °C). Two OA-modified base materials, pine/OA-106 and pine/OA-124, with different OA-coverages were first prepared and the second fatty acids with C3, C6, C8, C10, C12, C14, or C16 alkyl chains were applied to cover the remaining surface hydroxyl groups.
View Article and Find Full Text PDFThe accumulation of bacteria in surface-attached biofilms can be detrimental to human health, dental hygiene, and many industrial processes. Natural biofilms are soft and often transparent, and they have heterogeneous biological composition and structure over micro- and macroscales. As a result, it is challenging to quantify the spatial distribution and overall intensity of biofilms.
View Article and Find Full Text PDFBiofilms are organized structures composed mainly of cells and extracellular polymeric substances produced by the constituent microorganisms. Ubiquitous in nature, biofilms have an innate ability to capture and retain passing material and may therefore act as natural collectors of contaminants or signatures of upstream activities. To determine the persistence and detectability of DNA passing through a sink drain environment, Bacillus anthracis strain Ames35 was cultured (6.
View Article and Find Full Text PDFAn energy transfer relationship between core-shell CdSe/ZnS quantum dots (QDs) and the optical protein bacteriorhodopsin (bR) is shown, demonstrating a distance-dependent energy transfer with 88.2% and 51.1% of the QD energy being transferred to the bR monomer at separation distances of 3.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
September 2010
Harnessing the energy transfer interactions between the optical protein bacteriorhodopsin (bR) and CdSe/ZnS quantum dots (QDs) could provide a novel bio-nano electronics substrate with a variety of applications. In the present study, a polydimethyldiallyammonium chloride based I-SAM technique has been utilized to produce bilayers, trilayers and multilayers of alternating monolayers of bR, PDAC and QD's on a conductive ITO substrate. The construction of multilayer systems was directly monitored by measuring the unique A570 nm absorbance of bR, as well as QD fluorescence emission.
View Article and Find Full Text PDFNanoscale sensing arrays utilizing the unique properties of the optical protein bacteriorhodopsin and colloidal semiconductor quantum dots are being developed for toxin detection applications. This paper describes an innovative method to activate bacteriorhodopsin-based electrodes with the optical output of quantum dots, producing an enhanced electrical response from the protein. Results show that the photonic emission of CdSe/ZnS quantum dots is absorbed by the bacteriorhodopsin retinal and initiates the proton pumping sequence, resulting in an electrical output from a bacteriorhodopsin-based electrode.
View Article and Find Full Text PDF