Publications by authors named "Eric Whitenton"

Measurement of the high-temperature melt pool region in the laser powder bed fusion (L-PBF) process is a primary focus of researchers to further understand the dynamic physics of the heating, melting, adhesion, and cooling which define this commercially popular additive manufacturing process. This paper will detail the design, execution, and results of high speed, high magnification in-situ thermographic measurements conducted at the National Institute of Standards and Technology (NIST) focusing on the melt pool region of a commercial L-PBF process. Multiple phenomena are observed including plasma plume and hot particle ejection from the melt region.

View Article and Find Full Text PDF

Laser powder bed fusion (LPBF) is an additive manufacturing (AM) process in which a high power laser melts metal powder layers into complex, three-dimensional shapes. LPBF parts are known to exhibit relatively high residual stresses, anisotropic microstructure, and a variety of defects. To mitigate these issues, in-situ measurements of the melt-pool phenomena may illustrate relationships between part quality and process signatures.

View Article and Find Full Text PDF

Accurate non-contact temperature measurement is important to optimize manufacturing processes. This applies to both additive (3D printing) and subtractive (material removal by machining) manufacturing. Performing accurate single wavelength thermography suffers numerous challenges.

View Article and Find Full Text PDF

A bullet signature measurement system based on a stylus instrument was developed at the National Institute of Standards and Technology (NIST) for the signature measurements of NIST RM (Reference Material) 8240 standard bullets. The standard bullets are developed as a reference standard for bullet signature measurements and are aimed to support the recently established National Integrated Ballistics Information Network (NIBIN) by the Bureau of Alcohol, Tobacco and Firearms (ATF) and the Federal Bureau of Investigation (FBI). The RM bullets are designed as both a virtual and a physical bullet signature standard.

View Article and Find Full Text PDF