New treatment paradigms that slow or reverse progression of chronic kidney disease (CKD) are needed to relieve significant patient and healthcare burdens. We have shown that a population of selected renal cells (SRCs) stabilized disease progression in a mass reduction model of CKD. Here, we further define the cellular composition of SRCs and apply this novel therapeutic approach to the ZSF1 rat, a model of severe progressive nephropathy secondary to diabetes, obesity, dyslipidemia, and hypertension.
View Article and Find Full Text PDFDedifferentiation and proliferation of resident tubular epithelial cells is a mechanism of action potentially contributing to repair and regeneration in kidneys presenting with ischemic or chronic disease. To more efficiently develop cell and tissue engineering technologies for the kidney, we have developed molecular assays to evaluate the acquisition of a pluripotent state associated with stem/progenitor cell phenotype during induction of a regenerative response within the kidneys of rats with chronic kidney disease (CKD) following therapeutic intervention. Intrarenal delivery of selected bioactive renal cells leads to significant upregulation of pluripotency-associated SOX2 mRNA within the diseased kidney tissue from 1 to 24 weeks after treatment.
View Article and Find Full Text PDFChronic kidney disease (CKD) is a global health problem; the growing gap between the number of patients awaiting transplant and organs actually transplanted highlights the need for new treatments to restore renal function. Regenerative medicine is a promising approach from which treatments for organ-level disorders (e.g.
View Article and Find Full Text PDFEstablished chronic kidney disease (CKD) may be identified by severely impaired renal filtration that ultimately leads to the need for dialysis or kidney transplant. Dialysis addresses only some of the sequelae of CKD, and a significant gap persists between patients needing transplant and available organs, providing impetus for development of new CKD treatment modalities. Some postulate that CKD develops from a progressive imbalance between tissue damage and the kidney's intrinsic repair and regeneration processes.
View Article and Find Full Text PDFIntroduction: The phenotypic plasticity of the human prostate stem cell within human prostate tissue was examined to determine the response of the stem cell to changes in the androgenic environment.
Methods: Prostate xenografts were transplanted into athymic nu/nu mice implanted with testosterone pellets, allowed to establish for 1 month time point, the hosts were castrated and pellets removed, and following 1 month of androgen deprivation, the hosts were stimulated with androgen for 2 days to induce proliferation of the residual population of stem cells (2-month time point).
Results: Glands in benign xenografts harvested at the 1- and 2-month time points contained basal cell layers that expressed p63 and high molecular weight cytokeratin, and in which essentially all of the cellular proliferation was localized, consistent with the proposed localization of the prostate stem cell.
Transgenic spontaneously occurring and transplantable xenograft models of adenocarcinoma of the prostate (CaP) are established tools for the study of CaP progression and metastasis. However, no animal model of CaP has been characterized that recapitulates the response of the human prostate vascular compartment to the evolving tumor microenvironment during CaP progression. We report that primary xenografts of human CaP and of noninvolved areas of the human prostate peripheral zone transplanted to athymic nude mice provide a unique model of human angiogenesis occurring in an intact human prostate tissue microenvironment.
View Article and Find Full Text PDF