Publications by authors named "Eric W Rowe"

Preclinical biomedical research is limited by the predictiveness of in vivo and in vitro models. While in vivo models offer the most complex system for experimentation, they are also limited by ethical, financial, and experimental constraints. In vitro models are simplified models that do not offer the same complexity as living animals but do offer financial affordability and more experimental freedom; therefore, they are commonly used.

View Article and Find Full Text PDF

Although Clostridium difficile infection (CDI) is a common disease in swine, there is a lack of prevention strategies. The objectives of this study were to evaluate: i) the effectiveness of Lactobacillus spp. and ii) non-toxigenic C.

View Article and Find Full Text PDF

Hydroxylated fullerenes act as potent inhibitors of cytochrome P450-dependent monooxygenases, and are reported to be very strong antioxidants quenching reactive oxygen species (ROS) production. Effects of nanosized hydroxylated fullerenes on fish neutrophil function and immune gene transcription was investigated using fathead minnow (Pimephales promelas). Neutrophil function assays were used to determine the effects of fullerene exposure in vitro and in vivo on oxidative burst, degranulation and extracellular trap (NETs) release, and the innate immune gene transcription was determined with quantitative PCR (qPCR).

View Article and Find Full Text PDF

Background: With a traditional medical use for treatment of various ailments, herbal preparations of Echinacea are now popularly used to improve immune responses. One likely mode of action is that alkamides from Echinacea bind to cannabinoid type 2 (CB2) receptors and induce a transient increase in intracellular Ca2+. Here, we show that unidentified compounds from Echinacea purpurea induce cytosolic Ca2+ elevation in non-immune-related cells, which lack CB2 receptors and that the Ca2+ elevation is not influenced by alkamides.

View Article and Find Full Text PDF

Effects of nanosized (<100 nm) titanium dioxide (TiO(2)) particles on fish neutrophils and immune gene expression was investigated using the fathead minnow (Pimpehales promelas). Expanded use of TiO(2) in the cosmetic industry has increased the potential exposure risk to aquatic ecosystems and human health. Effects of nano-TiO(2) on neutrophil function of the fathead minnow was investigated using oxidative burst, neutrophil extracellular traps (NETs) release and degranulation of primary granules.

View Article and Find Full Text PDF

In order for stem cells to fulfill their clinical promise, we must understand their developmental transitions and it must be possible to control the differentiation of stem cells into specific cell fates. To understand the mechanism of the sequential restriction and multipotency of stem cells, we have established culture conditions that allow the differentiation of multipotential neural stem cells from postnatal stem cells. We used immunocytochemistry, fluorescence microscopy, and calcium imaging to demonstrate that progeny of adult rat neural stem cells develop into functional neurons that release excitatory neurotransmitters.

View Article and Find Full Text PDF

Leptin, the product of the obese gene, is a protein that is secreted primarily from adipocytes. Leptin can influence the function of the pituitary gland through its action on the hypothalamus, but it can also directly act at the level of the pituitary gland. The ability of leptin to induce an increase in intracellular Ca2+ concentration ([Ca2+]i) in somatotropes was examined in dispersed porcine pituitary cells using a calcium imaging system.

View Article and Find Full Text PDF

We synthesized a MCM-41-type mesoporous silica nanosphere (MSN)-based gene transfection system, where second generation (G2) polyamidoamines (PAMAMs) were covalently attached to the surface of MSN. The G2-PAMAM-capped MSN material (G2-MSN) was used to complex with a plasmid DNA (pEGFP-C1) that encodes for an enhanced green fluorescence protein. The gene transfection efficacy, uptake mechanism, and biocompatibility of the G2-MSN system with various cell types, such as neural glia (astrocytes), human cervical cancer (HeLa), and Chinese hamster ovarian (CHO) cells, were investigated.

View Article and Find Full Text PDF