Publications by authors named "Eric W Linton"

Euglenoids (Euglenida) are unicellular flagellates possessing exceptionally wide geographical and ecological distribution. Euglenoids combine a biotechnological potential with a unique position in the eukaryotic tree of life. In large part these microbes owe this success to diverse genetics including secondary endosymbiosis and likely additional sources of genes.

View Article and Find Full Text PDF

Aside from two samples collected nearly 50 years ago, little is known about the microbial composition of wind tidal flats in the hypersaline Laguna Madre, Texas. These mats account for ~42% of the lagoon's area. These microbial communities were sampled at four locations that historically had mats in the Laguna Madre, including Laguna Madre Field Station (LMFS), Nighthawk Bay (NH), and two locations in Kenedy Ranch (KRN and KRS).

View Article and Find Full Text PDF

Scanning electron microscopy (SEM) is a widely available technique that has been applied to study biological specimens ranging from individual proteins to cells, tissues, organelles, and even whole organisms. This protocol focuses on two chemical drying methods, hexamethyldisilazane (HMDS) and t-butyl alcohol (TBA), and their application to imaging of both prokaryotic and eukaryotic organisms using SEM. In this article, we describe how to fix, wash, dehydrate, dry, mount, sputter coat, and image three types of organisms: cyanobacteria (Toxifilum mysidocida, Golenkina sp.

View Article and Find Full Text PDF

Cyanobacteria occupy many niches within terrestrial, planktonic, and benthic habitats. The diversity of habitats colonized, similarity of morphology, and phenotypic plasticity all contribute to the difficulty of cyanobacterial identification. An unknown marine filamentous cyanobacterium was isolated from an aquatic animal rearing facility having mysid mortality events.

View Article and Find Full Text PDF

The Euglenophyceae chloroplast was acquired when a heterotrophic euglenoid engulfed a green alga and subsequently retained the algal chloroplast, in a process known as secondary endosymbiosis. Since this event, Euglenophyceae have diverged widely and their chloroplast genomes (cpGenomes) have as well. Changes to the cpGenome include extensive gene rearrangement and the proliferation of introns, the analyses of which have proven to be useful in examining cpGenome changes throughout the Euglenophyceae.

View Article and Find Full Text PDF

Teredinibacter turnerae is a cultivable intracellular endosymbiont of xylotrophic (woodfeeding)bivalves of the Family Teredinidae (shipworms). Although T. turnerae has been isolated from many shipworm taxa collected in many locations, no systematic effort has been made to explore genetic diversity within this symbiont species across the taxonomic and geographical range of its hosts.

View Article and Find Full Text PDF

Using Maximum Likelihood and Bayesian analyses of three genes, nuclear SSU (nSSU) and LSU (nLSU) rDNA, and chloroplast SSU (cpSSU) rDNA, the relationships among 82 plastid-containing strains of euglenophytes were clarified. The resulting tree split into two major clades: clade one contained Euglena, Trachelomonas, Strombomonas, Colacium, Monomorphina, Cryptoglena and Euglenaria; clade two contained Lepocinclis, Phacus and Discoplastis. The majority of the members of Euglena were contained in clade A, but seven members were outside of this clade.

View Article and Find Full Text PDF

Three maize (Zea mays) bacterial artificial chromosome (BAC) libraries were constructed from inbred line B73. High-density filter sets from all three libraries, made using different restriction enzymes (HindIII, EcoRI, and MboI, respectively), were evaluated with a set of complex probes including the 185-bp knob repeat, ribosomal DNA, two telomere-associated repeat sequences, four centromere repeats, the mitochondrial genome, a multifragment chloroplast DNA probe, and bacteriophage lambda. The results indicate that the libraries are of high quality with low contamination by organellar and lambda-sequences.

View Article and Find Full Text PDF

Almost since the creation of the genus Euglena (Ehrenberg), the taxa assigned to it have been separated, split apart, and reorganized into new genera based on morphological relationships, resulting in the creation of the genera Phacus (Dujardin), Lepocinclis (Perty), Astasia (Pringsheim), and Khawkinea ( Jahn and McKibben) based on intuitive methods. In an effort to assess the validity of these genera, we have used small subunit (SSU) rDNA data to generate a phylogenetic framework for these genera, with particular attention to the genus Euglena. Using the conserved sequence areas, we performed a phylogenetic analysis using parsimony, maximum likelihood, and distance methods.

View Article and Find Full Text PDF