Background: Abnormal muscle co-activation contributes to impairment after stroke. We developed a myoelectric computer interface (MyoCI) training paradigm to reduce abnormal co-activation. MyoCI provides intuitive feedback about muscle activation patterns, enabling decoupling of these muscles.
View Article and Find Full Text PDFThe recent explosion of interest in brain-machine interfaces (BMIs) has spurred research into choosing the optimal input signal source for a desired application. The signals with highest bandwidth--single neuron action potentials or spikes--typically are difficult to record for more than a few years after implantation of intracortical electrodes. Fortunately, field potentials recorded within the cortex (local field potentials, LFPs), at its surface (electrocorticograms, ECoG) and at the dural surface (epidural, EFPs) have also been shown to contain significant information about movement.
View Article and Find Full Text PDFBrain-machine interfaces (BMIs) use signals from the brain to control a device such as a computer cursor. Various types of signals have been used as BMI inputs, from single-unit action potentials to scalp potentials. Recently, intermediate-level signals such as subdural field potentials have also shown promise.
View Article and Find Full Text PDF