Publications by authors named "Eric W Lemmon"

Unlabelled: We present a new wide-ranging correlation for the viscosity of nitrogen based on critically evaluated experimental data as well as calculations. The correlation is designed to be used with densities from an existing equation of state, which is valid from the triple point to 1000 K, at pressures up to 2200 MPa. The estimated uncertainty (at the 95% confidence level) for the viscosity varies depending on the temperature and pressure, from a low of 0.

View Article and Find Full Text PDF

Unlabelled: An empirical fundamental equation of state in terms of the Helmholtz energy for tetrahydrofuran is presented. In the validity range from the triple-point temperature up to 550 K and pressures up to 600 MPa, the equation of state enables the calculation of all thermodynamic properties in the liquid, vapor, and super-critical regions including saturation states. Based on an extensive literature review, experimental data are represented within their experimental uncertainty.

View Article and Find Full Text PDF

In this work, two classes of defects with multiparameter equations of state are investigated. In the first, it is shown that the critical point provided by equation of state developers often does not exactly meet the criticality conditions based on the first two density derivatives of the pressure being zero at the critical point. Based on the more accurate locations of the critical points given in the first part, the scaling of the densities along the binodal and spinodal in the critical region are investigated, and we find that the vast majority of equations have reasonable behavior but a few do not.

View Article and Find Full Text PDF

The NIST REFPROP software program is a powerful tool for calculating thermophysical properties of industrially important fluids, and this manuscript describes the models implemented in, and features of, this software. REFPROP implements the most accurate models available for selected pure fluids and their mixtures that are valid over the entire fluid range including gas, liquid, and supercritical states, with the goal of uncertainties approaching the level of the underlying experimental data. The equations of state for thermodynamic properties are primarily of the Helmholtz energy form; a variety of models are implemented for the transport properties.

View Article and Find Full Text PDF

Compressed-liquid densities of three compositions of the binary mixture dimethyl ether (CAS No. 115-10-6) + pentane (CAS No. 109-66-0) have been measured with a vibrating U-tube densimeter.

View Article and Find Full Text PDF

An equation for the density of hydrogen gas has been developed that agrees with the current standard to within 0.01 % from 220 K to 1000 K with pressures up to 70 MPa, to within 0.01 % from 255 K to 1000 K with pressures to 120 MPa, and to within 0.

View Article and Find Full Text PDF

ThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported recently in this journal. The present paper describes two major software enhancements to TDE: (1) generation of equation of state (EOS) representations on demand and (2) establishment of a dynamically updated experimental data resource for use in the critical evaluation process. Four EOS formulations have been implemented in TDE for on-demand evaluation: the volume translated Peng-Robinson, modified Sanchez-Lacombe, PC-SAFT, and Span Wagner EOS.

View Article and Find Full Text PDF