Aims: RNA-binding proteins (RBPs) play pivotal roles in carcinogenesis and immunotherapy. Leucine-rich pentapeptide repeat-containing protein (LRPPRC) is crucial for RNA polyadenylation, transport, and stability. Although recent studies have suggested LRPPRC's potential role in tumor progression, its significance in tumor prognosis, diagnosis, and immunology remains unclear.
View Article and Find Full Text PDFCancer stem-like cells (CSCs) contribute to cancer metastasis, drug resistance and tumor relapse, yet how amino acid metabolism promotes CSC maintenance remains exclusive. Here, we identify that proline synthetase PYCR1 is critical for breast cancer stemness and tumor growth. Mechanistically, PYCR1-synthesized proline activates cGMP-PKG signaling to enhance cancer stem-like traits.
View Article and Find Full Text PDFCancer cell receives extracellular signal inputs to obtain a stem-like status, yet how tumor microenvironmental (TME) neural signals steer cancer stemness to establish the hierarchical tumor architectures remains elusive. Here, a pan-cancer transcriptomic screening for 10852 samples of 33 TCGA cancer types reveals that cAMP-responsive element (CRE) transcription factors are convergent activators for cancer stemness. Deconvolution of transcriptomic profiles, specification of neural markers and illustration of norepinephrine dynamics uncover a bond between TME neural signals and cancer-cell CRE activity.
View Article and Find Full Text PDFIntroduction: Accumulating evidence has implicated a pivotal role for FOXO3, FOXM1 and SIRT6 in cancer progression. The majority of researches focused on the functions of these proteins in drug resistance, but their relationships with radiotherapy (RT) response remain unclear. In this study, we examined protein expression of FOXO3, FOXM1 and SIRT6 and their clinical significance in a Swedish rectal cancer trial of preoperative RT.
View Article and Find Full Text PDFNeutrophils are dynamic with their phenotype and function shaped by the microenvironment, such as the N1 antitumor and N2 pro-tumor states within the tumor microenvironment (TME), but its regulation remains undefined. Here we examine TGF-β1/Smad3 signaling in tumor-associated neutrophils (TANs) in non-small cell lung carcinoma (NSCLC) patients. Smad3 activation in N2 TANs is negatively correlate with the N1 population and patient survival.
View Article and Find Full Text PDFWithout an effective strategy for targeted therapy, glioblastoma is still incurable with a median survival of only 15 months. Both chronic inflammation and epigenetic reprogramming are hallmarks of cancer. However, the mechanisms and consequences of their cooperation in glioblastoma remain unknown.
View Article and Find Full Text PDFTumor innervation is a common phenomenon with unknown mechanism. Here, we discovered a direct mechanism of tumor-associated macrophage (TAM) for promoting de novo neurogenesis via a subset showing neuronal phenotypes and pain receptor expression associated with cancer-driven nocifensive behaviors. This subset is rich in lung adenocarcinoma associated with poorer prognosis.
View Article and Find Full Text PDFThe tumor microenvironment (TME) represents a milieu enabling cancer cells to develop malignant properties, while concerted interactions between cancer and stromal cells frequently shape an "activated/reprogramed" niche to accelerate pathological progression. Here we report that a soluble factor epiregulin (EREG) is produced by senescent stromal cells, which non-cell-autonomously develop the senescence-associated secretory phenotype (SASP) upon DNA damage. Genotoxicity triggers EREG expression by engaging NF-κB and C/EBP, a process supported by elevated chromatin accessibility and increased histone acetylation.
View Article and Find Full Text PDFTumor immune microenvironment exerts a profound effect on the population of infiltrating immune cells. Tissue inhibitor of matrix metalloproteinase 1 (TIMP1) is frequently overexpressed in a variety of cells, particularly during inflammation and tissue injury. However, its function in cancer and immunity remains enigmatic.
View Article and Find Full Text PDFObesity and adipose tissue have been closely related to a poor cancer prognosis, especially in prostate and breast cancer patients. The ability of transferring lipids from the adipose tissue to the tumor cells is actively linked to tumor progression. However, different types of breast tumor seem to use these lipids in different ways and metabolize them in different pathways.
View Article and Find Full Text PDFCancer-associated fibroblasts (CAFs) are important in tumor microenvironment (TME) driven cancer progression. However, CAFs are heterogeneous and still largely underdefined, better understanding their origins will identify new therapeutic strategies for cancer. Here, the authors discovered a new role of macrophage-myofibroblast transition (MMT) in cancer for de novo generating protumoral CAFs by resolving the transcriptome dynamics of tumor-associated macrophages (TAM) with single-cell resolution.
View Article and Find Full Text PDFUncontrolled mitosis is one of the most important features of cancer, and mitotic kinases are thought to be ideal targets for anticancer therapeutics. However, despite numerous clinical attempts spanning decades, clinical trials for mitotic kinase-targeting agents have generally stalled in the late stages due to limited therapeutic effectiveness. Alisertib (MLN8237) is a promising oral mitotic aurora kinase A (AURKA, Aurora-A) selective inhibitor, which is currently under several clinical evaluations but has failed in its first Phase III trial due to inadequate efficacy.
View Article and Find Full Text PDFMincle is essential for tumor-associated macrophage (TAM)-driven cancer progression and represents a potential immunotherapeutic target for cancer. Nevertheless, the lack of a specific inhibitor has largely limited its clinical translation. Here, we successfully developed a gene therapeutic strategy for silencing Mincle in a virus-free and tumor-specific manner by combining RNA interference technology with an ultrasound-microbubble-mediated gene transfer system (USMB).
View Article and Find Full Text PDFSignal Transduct Target Ther
September 2021
Application of differentiation therapy targeting cellular plasticity for the treatment of solid malignancies has been lagging. Nasopharyngeal carcinoma (NPC) is a distinctive cancer with poor differentiation and high prevalence of Epstein-Barr virus (EBV) infection. Here, we show that the expression of EBV latent protein LMP1 induces dedifferentiated and stem-like status with high plasticity through the transcriptional inhibition of CEBPA.
View Article and Find Full Text PDFCellular senescence restrains the expansion of neoplastic cells through several layers of regulation. We report that the histone H3-specific demethylase KDM4 is expressed as human stromal cells undergo senescence. In clinical oncology, upregulated KDM4 and diminished H3K9/H3K36 methylation correlate with poorer survival of prostate cancer patients post-chemotherapy.
View Article and Find Full Text PDFForkhead box M1 (FOXM1) is known to play a role in breast cancer progression. FOXM1 inhibition becomes one of the strategies in developing the novel cancer therapy. Recently, thiostrepton has been recognized as a potent FOXM1 inhibitor.
View Article and Find Full Text PDFSignificant advance has been made towards understanding glioblastoma metabolism through global metabolomic profiling. However, hitherto little is known about the role by which altered metabolism plays in driving the aggressive glioma phenotype. We have previously identified hypotaurine as one of the top-ranked metabolites for differentiating low- and high-grade tumors, and that there is also a strong association between the levels of intratumoral hypotaurine and expression of its biosynthetic enzyme, cysteamine (2-aminoethanethiol) dioxygenase (ADO).
View Article and Find Full Text PDFBackground: Overexpression of Aurora-A (AURKA) is a feature of breast cancer and associates with adverse prognosis. The selective Aurora-A inhibitor alisertib (MLN8237) has recently demonstrated promising antitumor responses as a single agent in various cancer types but its phase III clinical trial was reported as a failure since MLN8237 did not show an apparent effect in prolonging the survival of patients. Thus, identification of potential targets that could enhance the activity of MLN8237 would provide a rationale for drug combination to achieve better therapeutic outcome.
View Article and Find Full Text PDFFOXO proteins are transcription factors that are involved in numerous physiological processes and in various pathological conditions, including cardiovascular disease, cancer, diabetes and chronic neurological diseases. For example, FOXO proteins are context-dependent tumour suppressors that are frequently inactivated in human cancers, and FOXO3 is the second most replicated gene associated with extreme human longevity. Therefore, pharmacological manipulation of FOXO proteins is a promising approach to developing therapeutics for cancer and for healthy ageing.
View Article and Find Full Text PDF