Racial biases, which harm marginalized and excluded communities, may be combatted by clarifying misconceptions about race during biology lessons. We developed a human genetics laboratory activity that challenges the misconception that race is biological (biological essentialism). We assessed the relationship between this activity and student outcomes using a survey of students' attitudes about biological essentialism and color-evasive ideology and a concept inventory about phylogeny and human diversity.
View Article and Find Full Text PDFA primary goal of science and engineering (S&E) education is to produce good problem solvers, but how to best teach and measure the quality of problem solving remains unclear. The process is complex, multifaceted, and not fully characterized. Here, we present a detailed characterization of the S&E problem-solving process as a set of specific interlinked decisions.
View Article and Find Full Text PDFThe rheological properties of active suspensions are studied via microrheology: tracking the motion of a colloidal probe particle in order to measure the viscoelastic response of the embedding material. The passive probe particle with size R is pulled through the suspension by an external force F, which causes it to translate at some speed U. The bath is comprised of a Newtonian solvent with viscosity η and a dilute dispersion of active Brownian particles (ABPs) with size a, characteristic swim speed U, and a reorientation time τ.
View Article and Find Full Text PDFIn a colloidal suspension at equilibrium, the diffusive motion of a tracer particle due to random thermal fluctuations from the solvent is related to the particle's response to an applied external force, provided this force is weak compared to the thermal restoring forces in the solvent. This is known as the fluctuation-dissipation theorem (FDT) and is expressed via the Stokes-Einstein-Sutherland (SES) relation D = kT/ζ, where D is the particle's self-diffusivity (fluctuation), ζ is the drag on the particle (dissipation), and kT is the thermal Boltzmann energy. Active suspensions are widely studied precisely because they are far from equilibrium-they can generate significant nonthermal internal stresses, which can break the detailed balance and time-reversal symmetry-and thus cannot be assumed to obey the FDT a priori.
View Article and Find Full Text PDFWe study the motion of a spherical active Brownian particle (ABP) of size a, moving with a fixed speed U0, and reorienting on a time scale τR in the presence of a confining boundary. Because momentum is conserved in the embedding fluid, we show that the average force per unit area on the boundary equals the bulk mechanical pressure P∞ = p∞f + Π∞, where p∞f is the fluid pressure and Π∞ is the particle pressure; this is true for active and passive particles alike regardless of how the particles interact with the boundary. As an example, we investigate how hydrodynamic interactions (HI) change the particle-phase pressure at the wall, and find that Πwall = n∞(kBT + ζ(Δ)U0l(Δ)/6), where ζ is the (Stokes) drag on the swimmer, l = U0τR is the run length, and Δ is the minimum gap size between the particle and the wall; as Δ → ∞ this is the familiar swim pressure [Takatori et al.
View Article and Find Full Text PDFWe study the diffusion of a Brownian probe particle of size R in a dilute dispersion of active Brownian particles of size a, characteristic swim speed U_{0}, reorientation time τ_{R}, and mechanical energy k_{s}T_{s}=ζ_{a}U_{0}^{2}τ_{R}/6, where ζ_{a} is the Stokes drag coefficient of a swimmer. The probe has a thermal diffusivity D_{P}=k_{B}T/ζ_{P}, where k_{B}T is the thermal energy of the solvent and ζ_{P} is the Stokes drag coefficient for the probe. When the swimmers are inactive, collisions between the probe and the swimmers sterically hinder the probe's diffusive motion.
View Article and Find Full Text PDFEnzymatic hydrolysis is one of the critical steps in depolymerizing lignocellulosic biomass into fermentable sugars for further upgrading into fuels and/or chemicals. However, many studies still rely on empirical trends to optimize enzymatic reactions. An improved understanding of enzymatic hydrolysis could allow research efforts to follow a rational design guided by an appropriate theoretical framework.
View Article and Find Full Text PDFIn this study, we extend imaging and modeling work that was done in Part I of this report for a pure cellulose substrate (filter paper) to more industrially relevant substrates (untreated and pretreated hardwood and switchgrass). Using confocal fluorescence microscopy, we are able to track both the structure of the biomass particle via its autofluorescence, and bound enzyme from a commercial cellulase cocktail supplemented with a small fraction of fluorescently labeled Trichoderma reseii Cel7A. Imaging was performed throughout hydrolysis at temperatures relevant to industrial processing (50°C).
View Article and Find Full Text PDF