Publications by authors named "Eric Von Elert"

Epiphytic diatoms growing in Mediterranean seagrass meadows, particularly those of the genus , are abundant and ecologically significant, even in naturally acidified environments. One intriguing aspect of some benthic diatoms is their production of an unidentified cell-death-promoting compound, which induces destruction of the androgenic gland in Leach, 1816, a shrimp exhibiting protandric hermaphroditism, principally under normal environmental pH levels. The consumption of spp.

View Article and Find Full Text PDF

Secondary metabolites produced by primary producers have a wide range of functions as well as indirect effects outside the scope of their direct target. Research suggests that protease inhibitors produced by cyanobacteria influence grazing by herbivores and may also protect against parasites of cyanobacteria. In this study, we asked whether those same protease inhibitors produced by cyanobacteria could also influence the interactions of herbivores with their parasites.

View Article and Find Full Text PDF

There is growing evidence of negative impacts of antidepressants on behavior of aquatic non-target organisms. Accurate environmental risk assessment requires an understanding of whether antidepressants with similar modes of action have consistent negative impacts. Here, we tested the effect of acute exposure to two antidepressants, fluoxetine and venlafaxine (0-50 µg/L), on the behavior of non-target organism, i.

View Article and Find Full Text PDF

Ocean acidification (OA) is a dramatic perturbation of seawater environments due to increasing anthropogenic emissions of CO. Several studies indicated that OA frequently induces marine biota stress and a reduction of biodiversity. Here, we adopted the macroalga as a model and applied a complementary multi-omics approach to investigate the metabolic profiles under normal and acidified conditions.

View Article and Find Full Text PDF

Fluidity of a given membrane decreases at lower ambient temperatures, whereas it rises at increasing temperatures, which is achieved through changes in membrane lipid composition. In consistence with homeoviscous adaptation theory, lower temperatures result in increased tissue concentrations of polyunsaturated fatty acids (PUFAs) in , suggesting a higher PUFA requirement at lower temperatures. However, so far homeoviscous adaptation has been suggested for single or geographically separated genotypes only.

View Article and Find Full Text PDF

Cyanobacterial blooms often produce different classes and chemical variants of toxins such as dietary protease inhibitors (PIs) that affect the keystone grazer Daphnia. However, it has been shown that Daphnia populations are able to locally adapt to frequently occurring dietary PIs by modulating their digestive proteases. Up until now, local adaptation has exclusively been tested by making use of single cyanobacterial strains and by measuring average population tolerance.

View Article and Find Full Text PDF

Hatching resting stages of ecologically important organisms such as Daphnia from lake sediments, referred to as resurrection ecology, is a powerful approach to assess changes in alleles and traits over time. However, the utility of the approach is constrained by a few obstacles, including low and/or biased hatching among genotypes. Here, we eliminated such bottlenecks by investigating DNA sequences isolated directly (i.

View Article and Find Full Text PDF

Background: Copepods are fundamental components of pelagic food webs, but reports on how molecular responses link to reproductive success in natural populations are still scarce. We present a de novo transcriptome assembly and differential expression (DE) analysis in Temora stylifera females collected in the Gulf of Naples, Mediterranean Sea, where this copepod dominates the zooplankton community. High-Throughput RNA-Sequencing and DE analysis were performed from adult females collected on consecutive weeks (May 23rd and 30th 2017), because opposite naupliar survival rates were observed.

View Article and Find Full Text PDF

In freshwater zooplankton diel vertical migration (DVM) is a widespread predator-avoidance behavior that is induced by kairomones released from fish. Thereby zooplankton reduces predation by fish by staying in deep and dark colder strata during daytime and migrating into warmer layers during night, and thus experiences diel alterations in temperature. Constantly lower temperatures have been shown to increase the relative abundance of polyunsaturated fatty acids (PUFAs) in sp.

View Article and Find Full Text PDF

Due to the combined effects of global warming and eutrophication, the frequency of deleterious cyanobacterial blooms in freshwater ecosystems has increased. In line with this, local adaptation of the aquatic keystone herbivore Daphnia to cyanobacteria has received major attention. Besides microcystins, the most frequent cyanobacterial secondary metabolites in such blooms are protease inhibitors (PIs).

View Article and Find Full Text PDF

Increased anthropogenic nutrient input has led to eutrophication of lakes and ponds, resulting worldwide in more frequent and severe cyanobacterial blooms. In particular, enhanced availability of phosphorus (P) can promote cyanobacterial mass developments and may affect the content of secondary metabolites in cyanobacteria, such as protease inhibitors (PIs). PIs are common among cyanobacteria and have been shown to negatively affect herbivorous zooplankton.

View Article and Find Full Text PDF

Oxylipins are important signal transduction lipoxygenase-derived products of fatty acids that regulate a variety of physiological and pathological processes in plants and animals. In marine diatoms, these molecules can be highly bioactive, impacting zooplankton grazers, bacteria and other phytoplankton. However, the ultimate cause for oxylipin production in diatoms is still poorly understood, from an evolutionary perspective.

View Article and Find Full Text PDF

Prey are under selection to minimize predation losses. In aquatic environments, many prey use chemical cues released by predators, which initiate predator avoidance. A prominent example of behavioral predator-avoidance constitutes diel vertical migration (DVM) in the freshwater microcrustacean spp.

View Article and Find Full Text PDF

Mass developments of toxin-producing cyanobacteria are frequently observed in freshwater ecosystems due to eutrophication and global warming. These mass developments can partly be attributed to cyanobacterial toxins, such as protease inhibitors (PIs), which inhibit digestive serine proteases of Daphnia, the major herbivore of phytoplankton and cyanobacteria. To date, mechanisms of this inhibition in the gut of the crustacean Daphnia magna are not known.

View Article and Find Full Text PDF

Copy number variation (CNV) of genes coding for certain enzymes has been shown to be responsible for adaptation of arthropods to anthropogenic toxins. Natural toxins produced by cyanobacteria in freshwater ecosystems, that is, protease inhibitors (PIs), have been demonstrated to increase in frequency over the last decades due to eutrophication and global warming. These PIs inhibit digestive proteases of Daphnia, the major herbivore of phytoplankton and cyanobacteria.

View Article and Find Full Text PDF

Insect repellents are widely applied to various materials and to both human and animal skin to deter mosquitoes and ticks. The most common deterrent compounds applied are DEET, EBAAP and icaridin (picaridin, Bayrepel). Due to their extensive application, these repellents are frequently detected in surface waters in considerable concentrations.

View Article and Find Full Text PDF

Synthetic insect repellents are compounds applied to surfaces to discourage insects, mainly mosquitoes, from landing on those surfaces. As some of these repellents have repeatedly been detected in surface waters at significant concentrations, they may also exert repellent effects on aquatic non-target organisms. In running water systems, aquatic invertebrates actively enter downstream drift in order to avoid unfavourable environmental conditions.

View Article and Find Full Text PDF

Fatty acids contribute to the nutritional quality of the phytoplankton and, thus, play an important role in Daphnia nutrition. One of the polyunsaturated fatty acids (PUFAs)--eicosapentaenoic acid (EPA)--has been shown to predict carbon transfer between primary producers and consumers in lakes, suggesting that EPA limitation of Daphnia in nature is widespread. Although the demand for EPA must be covered by the diet, the demand of EPA in Daphnia that differ in body size has not been addressed yet.

View Article and Find Full Text PDF

The genetic background of inducible morphological defences in Daphnia is still largely unknown. Dissolved infochemicals from the aquatic larvae of the phantom midge Chaoborus induce so-called 'neck-teeth' in the first three post-embryonic stages of Daphnia pulex This defence has become a textbook example of inducible defences. In a target gene approach, by using three Daphnia genotypes which show a gradient of neck-teeth induction in response to equal amounts of kairomone, we report a high correlation of neck-teeth induction in Daphnia pulex and relative gene expression of two chitin deacetylases.

View Article and Find Full Text PDF

Cyclic parthenogenetic organisms show a switch in reproductive strategy from asexual to sexual reproduction upon the occurrence of unfavourable environmental conditions. The sexual reproductive mode involves the production of ameiotic diploid males and the fertilization of meiotic haploid eggs. One beautiful example for this switch between parthenogenesis and sexual reproduction is Daphnia.

View Article and Find Full Text PDF

Commercial insect repellents like DEET (N,N-diethyl-m-toluamide), EBAAP (IR3535(®), (3-[N-butyl-N-acetyl]-aminopropionic acid, ethyl ester)) or Icaridine (picaridin, Bayrepel, 1-piperidinecarboxylic acid, 2-(2-hydroxyethyl), 1-methylpropyl ester) are used worldwide to protect against biting insects and ticks. The detection of these repellents in surface waters in concentrations up to several μg/L levels has caused concern that these substances might affect non-target organisms in freshwaters. Daphnia sp.

View Article and Find Full Text PDF

Herbivorous zooplankton avoid size-selective predation by vertical migration to a deep, cold water refuge. Adaptation to low temperatures in planktonic poikilotherms depends on essential dietary lipids; the availability of these lipids often limits growth and reproduction of zooplankton. We hypothesized that limitation by essential lipids may affect habitat preferences and predator avoidance behavior in planktonic poikilotherms.

View Article and Find Full Text PDF

Daphnia, an important model organism for studies on ecology and evolution, has become a textbook example for inducible defenses against predators. Inducible defenses are widespread in nature, and the underlying molecular mechanisms for this plasticity in general and in particular in Daphnia are not fully understood. Here, we provide for the first time a combination of established life-history changes (LHC), which are induced by chemical cues of a predator (fish kairomones), in Daphnia with differential peptide labeling (iTRAQ) in LC-MS/MS based proteomics.

View Article and Find Full Text PDF

Background: Cyanobacteria constitute a serious threat to freshwater ecosystems by producing toxic secondary metabolites, e.g. microcystins.

View Article and Find Full Text PDF