Osteoarthritis (OA) is a chronic and degenerative joint disease affecting more than 500 million patients worldwide with no disease-modifying treatment approved to date. Several publications report on the transforming growth factor β-activated kinase 1 (TAK1) as a potential molecular target for OA, with complementary anti-catabolic and anti-inflammatory effects. We report herein on the development of TAK1 inhibitors with physicochemical properties suitable for intra-articular injection, with the aim to achieve high drug concentration at the affected joint, while avoiding severe toxicity associated with systemic inhibition.
View Article and Find Full Text PDFActivation of the NLRP3 inflammasome in response to danger signals is a key innate immune mechanism and results in the production of the pro-inflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18) as well as pyroptotic cell death. Aberrant NLRP3 activation has been linked to many acute and chronic conditions ranging from atherosclerosis to Alzheimer's disease and cancer, and based on the clinical success of IL-1-targeting therapies, NLRP3 has emerged as an attractive therapeutic target. Herein we describe our discovery, characterization, and structure-based optimization of a pyridazine-based series of NLRP3 inhibitors initiating from an high-throughput screening campaign.
View Article and Find Full Text PDFNLRP3 is a molecular sensor recognizing a wide range of danger signals. Its activation leads to the assembly of an inflammasome that allows for activation of caspase-1 and subsequent maturation of IL-1β and IL-18, as well as cleavage of Gasdermin-d and pyroptotic cell death. The NLRP3 inflammasome has been implicated in a plethora of diseases including gout, type 2 diabetes, atherosclerosis, Alzheimer's disease, and cancer.
View Article and Find Full Text PDFWe describe the discovery and characterization of the supersoft topical JAK inhibitor , which is potent in biochemical and cellular assays as well as in human skin models. In blood, the neutral ester is rapidly hydrolyzed ( ∼ 6 min) to the corresponding charged carboxylic acid exhibiting >30-fold reduced permeability. Consequently, acid does not reach the intracellular JAK kinases and is inactive in cellular assays and in blood.
View Article and Find Full Text PDFWe present a novel concept for the design of supersoft topical drugs. Enzymatic cleavage of the carbonate ester of the potent pan Janus kinase (JAK) inhibitor releases hydroxypyridine . Due to hydroxypyridine-pyridone tautomerism, undergoes a rapid conformational change preventing the compound to assume the bioactive conformation required for binding to JAK kinases.
View Article and Find Full Text PDFInappropriate activation of TLR7 and TLR8 is linked to several autoimmune diseases, such as lupus erythematosus. Here we report on the efficient structure-based optimization of the inhibition of TLR8, starting from a co-crystal structure of a small screening hit. Further optimization of the physicochemical properties for cellular potency and expansion of the structure-activity relationship for dual potency finally resulted in a highly potent TLR7/8 antagonist with demonstrated efficacy after oral dosing.
View Article and Find Full Text PDFInappropriate activation of endosomal TLR7 and TLR8 occurs in several autoimmune diseases, in particular systemic lupus erythematosus (SLE). Herein, the development of a TLR8 antagonist competition assay and its application for hit generation of dual TLR7/8 antagonists are reported. The structure-guided optimization of the pyridone hit using this biochemical assay in combination with cellular and TLR8 cocrystal structural data resulted in the identification of a highly potent and selective TLR7/8 antagonist () with efficacy.
View Article and Find Full Text PDFObjective: To identify an agonist of RXRα and RARα with reduced undesired profiles of all-trans retinoic acid for differentiation-inducing therapy of acute promyelocytic leukemia (APL), such as its susceptibility to P450 enzyme, induction of P450 enzyme, increased sequestration by cellular retinoic acid binding protein and increased expression of P-glycoprotein, a virtual screening was performed.
Results And Conclusion: In this study, a phenyl-thiazolyl-benzoic acid derivative (PTB) was identified as a potent agonist of RXRα and RARα. PTB was characterized in nuclear receptor binding, reporter gene, cell differentiation and cell growth assays.
The oncogenic V617F mutation lies in the pseudokinase domain of JAK2, marking it as a potential target for development of compounds that might inhibit the pathogenic activity of the mutant protein. We used differential scanning fluorimetry to identify compounds that bind the JAK2 pseudokinase domain. Crystal structures of five candidate compounds with the wild-type domain reveal their modes of binding.
View Article and Find Full Text PDFThe transcription factor RORγt is an attractive drug-target due to its role in the differentiation of IL-17 producing Th17 cells that play a critical role in the etiopathology of several autoimmune diseases. Identification of starting points for RORγt inverse agonists with good properties has been a challenge. We report the identification of a fragment hit and its conversion into a potent inverse agonist through fragment optimization, growing and merging efforts.
View Article and Find Full Text PDFHeterozygous mutations in the cytotoxic T lymphocyte antigen-4 (CTLA-4) are associated with lymphadenopathy, autoimmunity, immune dysregulation, and hypogammaglobulinemia in about 70% of the carriers. So far, the incomplete penetrance of CTLA-4 haploinsufficiency has been attributed to unknown genetic modifiers, epigenetic changes, or environmental effects. We sought to identify potential genetic modifiers in a family with differential clinical penetrance of CTLA-4 haploinsufficiency.
View Article and Find Full Text PDFThe indolyl-naphthyl maleimide 7 is a potent inhibitor of the classical PKC isotypes α,β and shows excellent selectivity over the novel PKC isotypes δ,ε,η,θ and other kinases belonging to the AGC family. The SAR around 7 as well as the physico-chemical characteristics of selected derivatives and their activity in T and B cell activation and proliferation assays are discussed.
View Article and Find Full Text PDFBioorg Med Chem Lett
October 2015
Design and optimization of benzo- and pyrido-thiazoles/isothiazoles are reported leading to the discovery of the potent, orally bioavailable Syk inhibitor 5, which was found to be active in a rat PK/PD model. Compound 5 showed acceptable overall kinase selectivity. However, in addition to Syk it also inhibited Aurora kinase in enzymatic and cellular settings leading to findings in the micronucleus assay.
View Article and Find Full Text PDFA variety of cancers depend on JAK2 signaling, including the high-risk subset of B cell acute lymphoblastic leukemias (B-ALLs) with CRLF2 rearrangements. Type I JAK2 inhibitors induce paradoxical JAK2 hyperphosphorylation in these leukemias and have limited activity. To improve the efficacy of JAK2 inhibition in B-ALL, we developed the type II inhibitor CHZ868, which stabilizes JAK2 in an inactive conformation.
View Article and Find Full Text PDFWe describe the discovery of selective and potent Syk inhibitor 11, which exhibited favorable PK profiles in rat and dog and was found to be active in a collagen-induced arthritis model in rats. Compound 11 was selected for further profiling, but, unfortunately, in GLP toxicological studies it showed liver findings in rat and dog. Nevertheless, 11 could become a valuable tool compound to investigate the rich biology of Syk in vitro and in vivo.
View Article and Find Full Text PDFA novel class of selective inhibitors of ROCK1 and ROCK2 has been identified by structural based drug design. PK/PD experiments using a set of highly selective Rho kinase inhibitors suggest that systemic Rho kinase inhibition is linked to a reversible reduction in lymphocyte counts. These results led to the consideration of topical delivery of these molecules, and to the identification of a lead molecule 7 which shows promising PK and PD in a murine model of pulmonary hypertension after intra-tracheal dosing.
View Article and Find Full Text PDFWe describe two series of Syk inhibitors which potently abrogate Syk kinase function in enzymatic assays, cellular assays and in primary cells in the presence of blood. Introduction of a 7-aminoindole substituent led to derivatives with good kinase selectivity and little or no hERG channel inhibition (3b, 10c).
View Article and Find Full Text PDFA small library of fragments comprising putative recognition motifs for the catalytic dyad of aspartic proteases was generated by in silico similarity searches within the corporate compound deck based on rh-renin active site docking and scoring filters. Subsequent screening by NMR identified the low-affinity hits 3 and 4 as competitive active site binders, which could be shown by X-ray crystallography to bind to the hydrophobic S3-S1 pocket of rh-renin. As part of a parallel multiple hit-finding approach, the 3,5-disubstituted piperidine (rac)-5 was discovered by HTS using a enzymatic assay.
View Article and Find Full Text PDFJanus kinase (JAK) inhibitors are being developed for the treatment of rheumatoid arthritis, psoriasis, myeloproliferative neoplasms, and leukemias. Most of these drugs target the ATP-binding pocket and stabilize the active conformation of the JAK kinases. This type I binding mode can lead to an increase in JAK activation loop phosphorylation, despite blockade of kinase function.
View Article and Find Full Text PDFEnzymatic inhibitors of Janus kinase 2 (JAK2) are in clinical development for the treatment of myeloproliferative neoplasms (MPNs), B cell acute lymphoblastic leukemia (B-ALL) with rearrangements of the cytokine receptor subunit cytokine receptor-like factor 2 (CRLF2), and other tumors with constitutive JAK2 signaling. In this study, we identify G935R, Y931C, and E864K mutations within the JAK2 kinase domain that confer resistance across a panel of JAK inhibitors, whether present in cis with JAK2 V617F (observed in MPNs) or JAK2 R683G (observed in B-ALL). G935R, Y931C, and E864K do not reduce the sensitivity of JAK2-dependent cells to inhibitors of heat shock protein 90 (HSP90), which promote the degradation of both wild-type and mutant JAK2.
View Article and Find Full Text PDFThe present study describes a novel series of ATP-competitive PKC inhibitors based on the 2,6-naphthyridine template. Example compounds potently inhibit the novel Protein Kinase C (PKC) isotypes δ, ε, η, θ (in particular PKCε/η, and display a 10-100-fold selectivity over the classical PKC isotypes. The prototype compound 11 was found to inhibit PKCθ-dependent pathways in vitro and in vivo.
View Article and Find Full Text PDFWe describe a synthetic approach toward the rapid modification of phenyl-indolyl maleimides and the discovery of potent Jak3 inhibitor 1 with high selectivity within the Jak kinase family. We provide a rationale for this unprecedented selectivity based on the X-ray crystal structure of an analogue of 1 bound to the ATP-binding site of Jak3. While equally potent compared to the Pfizer pan Jak inhibitor CP-690,550 (2) in an enzymatic Jak3 assay, compound 1 was found to be 20-fold less potent in cellular assays measuring cytokine-triggered signaling through cytokine receptors containing the common γ chain (γC).
View Article and Find Full Text PDFThe recent discovery of an acquired activating point mutation in JAK2, substituting valine at amino acid position 617 for phenylalanine, has greatly improved our understanding of the molecular mechanism underlying chronic myeloproliferative neoplasms. Strikingly, the JAK2(V617F) mutation is found in nearly all patients suffering from polycythemia vera and in roughly every second patient suffering from essential thrombocythemia and primary myelofibrosis. Thus, JAK2 represents a promising target for the treatment of myeloproliferative neoplasms and considerable efforts are ongoing to discover and develop inhibitors of the kinase.
View Article and Find Full Text PDFWe have designed and synthesized a novel series of 2,8-diaryl-quinoxalines as Janus kinase 2 inhibitors. Many of the inhibitors show low nanomolar activity against JAK2 and potently suppress proliferation of SET-2 cells in vitro. In addition, compounds from this series have favorable rat pharmacokinetic properties suitable for in vivo efficacy evaluation.
View Article and Find Full Text PDF