Annu Int Conf IEEE Eng Med Biol Soc
August 2016
Electron micrography (EM) is an important method for determining the three-dimensional (3D) structure of macromolecular complexes and biological specimens. But there are several limitations such as poor signal-to-noise, limitation on range of tilt angles and sub-region subject to electron exposure, unintentional movements of the specimen, with EM systems that make the reconstruction procedure a severely ill-posed problem. A different choice of reconstruction method may lead to different results and create different additional artifacts in reconstructed images.
View Article and Find Full Text PDFFiltered back-projection and weighted back-projection have long been the methods of choice within the electron microscopy community for reconstructing the structure of macromolecular assemblies from electron tomography data. Here, we describe electron lambda-tomography, a reconstruction method that enjoys the benefits of the above mentioned methods, namely speed and ease of implementation, but also addresses some of their shortcomings. In particular, compared to these standard methods, electron lambda-tomography is less sensitive to artifacts that come from structures outside the region that is being reconstructed, and it can sharpen boundaries.
View Article and Find Full Text PDF