Long-term memories are formed by creating stable memory representations via memory consolidation, which mainly occurs during sleep following the encoding of labile memories in the hippocampus during waking. The entorhinal cortex (EC) has intricate connections with the hippocampus, but its role in memory consolidation is largely unknown. Using cell-type- and input-specific in vivo neural activity recordings, here we show that the temporoammonic pathway neurons in the EC, which directly innervate the output area of the hippocampus, exhibit potent oscillatory activities during anesthesia and sleep.
View Article and Find Full Text PDFThe dynamics of living organisms are organized across many spatial scales. However, current cost-effective imaging systems can measure only a subset of these scales at once. We have created a scalable multi-camera array microscope (MCAM) that enables comprehensive high-resolution recording from multiple spatial scales simultaneously, ranging from structures that approach the cellular scale to large-group behavioral dynamics.
View Article and Find Full Text PDFAdult rats equipped with a sensory prosthesis, which transduced infrared (IR) signals into electrical signals delivered to somatosensory cortex (S1), took approximately 4 d to learn a four-choice IR discrimination task. Here, we show that when such IR signals are projected to the primary visual cortex (V1), rats that are pretrained in a visual-discrimination task typically learn the same IR discrimination task on their first day of training. However, without prior training on a visual discrimination task, the learning rates for S1- and V1-implanted animals converged, suggesting there is no intrinsic difference in learning rate between the two areas.
View Article and Find Full Text PDFCan the adult brain assimilate a novel, topographically organized, sensory modality into its perceptual repertoire? To test this, we implemented a microstimulation-based neuroprosthesis that rats used to discriminate among infrared (IR) light sources. This system continuously relayed information from four IR sensors that were distributed to provide a panoramic view of IR sources, into primary somatosensory cortex (S1). Rats learned to discriminate the location of IR sources in <4 d.
View Article and Find Full Text PDFThe nucleus basalis (NB) is a cholinergic neuromodulatory structure that projects liberally to the entire cortical mantle and regulates information processing in all cortical layers. Here, we recorded activity from populations of single units in the NB as rats performed a whisker-dependent tactile discrimination task. Over 80% of neurons responded with significant modulation in at least one phase of the task.
View Article and Find Full Text PDFThe powers of lightning have been worshiped and feared by all known human cultures. While the chance of being struck by lightning is statistically very low, that risk becomes much greater in those who frequently work or play outdoors. Over the past 2 yr, there have been nearly 50 lightning-related deaths reported within the United States, with a majority of them associated with outdoor recreational activities.
View Article and Find Full Text PDFSensory neuroprostheses show great potential for alleviating major sensory deficits. It is not known, however, whether such devices can augment the subject's normal perceptual range. Here we show that adult rats can learn to perceive otherwise invisible infrared light through a neuroprosthesis that couples the output of a head-mounted infrared sensor to their somatosensory cortex (S1) via intracortical microstimulation.
View Article and Find Full Text PDFIn freely moving rats that are actively performing a discrimination task, single-unit responses in primary somatosensory cortex (S1) are strikingly different from responses to comparable tactile stimuli in immobile rats. For example, in the active discrimination context prestimulus response modulations are common, responses are longer in duration and more likely to be inhibited. To determine whether these differences emerge as rats learned a whisker-dependent discrimination task, we recorded single-unit S1 activity while rats learned to discriminate aperture-widths using their whiskers.
View Article and Find Full Text PDFSpike times encode stimulus values in many sensory systems, but it is generally unknown whether such temporal variations are decoded (i.e., whether they influence downstream networks that control behavior).
View Article and Find Full Text PDFPerformance in sensory discrimination tasks is commonly quantified using either information theory or ideal observer analysis. These two quantitative frameworks are often assumed to be equivalent. For example, higher mutual information is said to correspond to improved performance of an ideal observer in a stimulus estimation task.
View Article and Find Full Text PDFIn response to touches to their skin, medicinal leeches shorten their body on the side of the touch. We elicited local bends by delivering precisely controlled pressure stimuli at different locations, intensities, and durations to body-wall preparations. We video-taped the individual responses, quantifying the body-wall displacements over time using a motion-tracking algorithm based on making optic flow estimates between video frames.
View Article and Find Full Text PDFProgesterone pretreatment increases the number of synchronously proliferating stromal cells in the ovariectomized rat uterus, but estrogen is necessary to stimulate reentry into the cell cycle. To investigate the mechanisms underlying differential hormone actions, sexually mature ovariectomized rats were injected with progesterone (2 mg) for three consecutive days. Estradiol 17-beta (0.
View Article and Find Full Text PDFOral Surg Oral Med Oral Pathol Oral Radiol Endod
January 2003