Unlabelled: MT-3724, a novel engineered toxin body comprised of an anti-CD20 single-chain variable fragment genetically fused to Shiga-like Toxin A subunit, is capable of binding to and internalizing against CD20, inducing cell killing via permanent ribosomal inactivation. This study evaluated MT-3724 in patients with relapsed/refractory B-cell non-Hodgkin lymphoma (r/rNHL). This open-label, multiple-dose phase Ia/b trial included a dose escalation in patients with r/rNHL according to a standard 3+3 design.
View Article and Find Full Text PDFAcute kidney injury (AKI) is a life-threatening disease with no known curative or preventive therapies. Data from multiple animal models and human studies have linked dysregulation of bone morphogenetic protein (BMP) signaling to AKI. Small molecules that potentiate endogenous BMP signaling should have a beneficial effect in AKI.
View Article and Find Full Text PDFPurpose: As hypoxia can mediate resistance to immunotherapy, we investigated the safety, tolerability, and efficacy of combining evofosfamide, a prodrug that alleviates hypoxia, with ipilimumab, an immune checkpoint inhibitor, in immunologically "cold" cancers, which are intrinsically insensitive to immunotherapy, as well as in "hot/warm" metastatic cancers that are, atypical of such cancers, resistant to immunotherapy.
Patients And Methods: In a phase I, 3+3 dose-escalation trial (NCT03098160), evofosfamide (400-640 mg/m) and ipilimumab (3 mg/kg) were administered in four 3-week cycles. The former was administered on days 1 and 8 of cycles 1-2, while the latter was administered on day 8 of cycles 1-4.
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFThe post-genomic era has seen many advances in our understanding of cancer pathways, yet resistance and tumor heterogeneity necessitate multiple approaches to target even monogenic tumors. Here, we combine phenotypic screening with chemical genetics to identify pre-messenger RNA endonuclease cleavage and polyadenylation specificity factor 3 (CPSF3) as the target of JTE-607, a small molecule with previously unknown target. We show that CPSF3 represents a synthetic lethal node in a subset of acute myeloid leukemia (AML) and Ewing's sarcoma cancer cell lines.
View Article and Find Full Text PDFUnlabelled: Carboxylesterases hydrolyze esters, amides, and thioesters to produce carboxylic acids and resulting alcohols, amines, and thiols, respectively. Uridine 5'-diphosphate- glucuronosyltransferases are colocalized with carboxylesterases and have the potential to further metabolize carboxylic acids to acyl glucuronides, but it is currently unknown if acyl glucuronides, being esters, also interact with carboxylesterases.
Objective: This study explores the ability of acyl glucuronides to act as substrates or inhibitors of human carboxylesterases 1 (hCES1) and 2 (hCES2).
Rufinamide was evaluated in vitro to determine which enzyme(s) are responsible for rufinamide hydrolysis and whether valproate, one of its metabolites (valproyl-CoA), and/or the rufinamide hydrolysis product (CGP 47292) could inhibit hydrolysis. Rufinamide hydrolysis was mediated primarily by human carboxylesterase (hCE) 1 and was nonsaturable up to 500 μM. Two-thirds of rufinamide hydrolysis was estimated to occur in human microsomes and one-third in cytosol.
View Article and Find Full Text PDFThe carboxylesterases (CESs) are a family of serine hydrolases that hydrolyze compounds containing an ester, amide, or thioester. In humans, two dominant forms, CES1 and CES2, are highly expressed in organs of first-pass metabolism and play an important role in xenobiotic metabolism. The current study was conducted to better understand species-related differences in substrate selectivity and tissue expression of these enzymes.
View Article and Find Full Text PDFHuman carboxylesterase (CES) 1 and CES2 are members of the serine hydrolase superfamily, and both exhibit broad substrate specificity and are involved in xenobiotic and endobiotic metabolism. Although expression of CES1 and CES2 occurs in several organs, their expression in liver and small intestine is predominantly attributed to CES1 and CES2, respectively. We successfully expressed CES1 form b (CES1-b) and form c (CES1-c) as well as CES2 in baculovirus-infected High Five insect cells.
View Article and Find Full Text PDFDrug Metab Lett
December 2010
For high throughput screens, the quickest methodology possible is desirable, but a substantial amount of potentially useful information is lacking since most screens for metabolic stability are conducted at one concentration, and sometimes at one time point. Information that would benefit projects during the discovery phase are to know the metabolic rate linearity (K(m) value) and projected hepatic clearance (CL(h) value), which is possible by the addition of one more concentration. This study used the FDA-preferred probe cytochrome P450 substrates to determine K(m), V(max), and CL(int) values.
View Article and Find Full Text PDFLarge species differences in the expression of carboxylesterases (CE) have been described, but the interrelationships of CEs across species are not well characterized. In the current analyses, sequences with genomic structures similar to human CEs were found in piscine, avian, and mammalian genomes. Analyses of these genes suggest that four CE groups existed prior to mammalian divergence, with another form occurring after eutherian-marsupial divergence, yielding five distinct mammalian CE groups.
View Article and Find Full Text PDF2-Acetoxy-5-(alpha-cyclopropylcarbonyl-2-fluorobenzyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridine (prasugrel) is a novel thienopyridine prodrug with demonstrated inhibition of platelet aggregation and activation. The biotransformation of prasugrel to its active metabolite, 2-[1-[2-cyclopropyl-1-(2-fluorophenyl)-2-oxoethyl]-4-mercapto-3-piperidinylidene]acetic acid (R-138727), requires ester bond hydrolysis, forming the thiolactone 2-[2-oxo-6,7-dihydrothieno[3,2-c]pyridin-5(4H)-yl]-1-cyclopropyl-2-(2-fluorophenyl)ethanone(R-95913), followed by cytochrome P450-mediated metabolism to the active metabolite. The presumed role of the human liver- and intestinal-dominant carboxylesterases, hCE1 and hCE2, respectively, in the conversion of prasugrel to R-95913 was determined using expressed and purified enzymes.
View Article and Find Full Text PDFIntroduction: The effects of buffer and substrate solvent conditions on in vitro activity of carboxylesterases (CE) have not been previously described. Therefore, it is unknown if the many different assay conditions used by various laboratories have a substantial impact on the activity of CE enzymes.
Methods: Three human CEs were expressed and purified, and the hydrolysis of 4-nitrophenyl butyrate was measured to assess enzyme activity.
Comp Biochem Physiol Part D Genomics Proteomics
June 2007
With the release of the chimpanzee genomic database, much work has been accomplished to understand more fully the closest related species to humans. This study investigates the cytochrome P450 3A (CYP3A) subfamily and examines differences which may be expected between chimpanzees and humans in regards to CYP3A metabolism. A previous publication had reported the presence of five putative chimpanzee CYP3A isoforms, as compared to the four in humans (Williams ET et al.
View Article and Find Full Text PDFAn analysis of the cytochrome P450 3A subfamily (CYP3A) was undertaken in order to define relationships across species among subfamily members. Some members were excluded due to incomplete sequences, while others were held in abeyance because of their almost complete homology. This is the first publication of five chimpanzee CYP3A genes-CYP3A4, CYP3A5, CYP3A7, CYP3A43, and CYP3A67.
View Article and Find Full Text PDFJ Pharmacol Exp Ther
November 2004
This study examines the possible role of estrogen in regulating the expression of the human CYP3A subfamily: CYP3A4, CYP3A5, CYP3A7, and CYP3A43. To accomplish this goal, mRNA was quantified from human livers and endometrial samples, and total CYP3A protein levels were evaluated by Western immunoblot analysis of the liver samples. The human endometrial samples were from premenopausal and postmenopausal women.
View Article and Find Full Text PDF