Publications by authors named "Eric T Shea-Brown"

A major goal of computational neuroscience is to build accurate models of the activity of neurons that can be used to interpret their function in circuits. Here, we explore using functional cell types to refine single-cell models by grouping them into functionally relevant classes. Formally, we define a hierarchical generative model for cell types, single-cell parameters, and neural responses, and then derive an expectation-maximization algorithm with variational inference that maximizes the likelihood of the neural recordings.

View Article and Find Full Text PDF

A major goal of computational neuroscience is to build accurate models of the activity of neurons that can be used to interpret their function in circuits. Here, we explore using to refine single-cell models by grouping them into functionally relevant classes. Formally, we define a hierarchical generative model for cell types, single-cell parameters, and neural responses, and then derive an expectation-maximization algorithm with variational inference that maximizes the likelihood of the neural recordings.

View Article and Find Full Text PDF

Neural circuits are structured with layers of converging and diverging connectivity and selectivity-inducing nonlinearities at neurons and synapses. These components have the potential to hamper an accurate encoding of the circuit inputs. Past computational studies have optimized the nonlinearities of single neurons, or connection weights in networks, to maximize encoded information, but have not grappled with the simultaneous impact of convergent circuit structure and nonlinear response functions for efficient coding.

View Article and Find Full Text PDF

Unlabelled: While spike timing has been shown to carry detailed stimulus information at the sensory periphery, its possible role in network computation is less clear. Most models of computation by neural networks are based on population firing rates. In equivalent spiking implementations, firing is assumed to be random such that averaging across populations of neurons recovers the rate-based approach.

View Article and Find Full Text PDF