Climate change is transforming bioenergetic landscapes, challenging behavioral and physiological coping mechanisms. A critical question involves whether animals can adjust behavioral patterns and energy expenditure to stabilize fitness given reconfiguration of resource bases, or whether limits to plasticity ultimately compromise energy balance. In the Arctic, rapidly warming temperatures are transforming food webs, making Arctic organisms strong models for understanding biological implications of climate change-related environmental variability.
View Article and Find Full Text PDFCombined effects of multiple, climate change-associated stressors are of mounting concern, especially in Arctic ecosystems. Elevated mercury (Hg) exposure in Arctic animals could affect behavioral responses to changes in foraging landscapes caused by climate change, generating interactive effects on behavior and population resilience. We investigated this hypothesis in little auks (), a keystone Arctic seabird.
View Article and Find Full Text PDFAccelerometry has been widely used to estimate energy expenditure in a broad array of terrestrial and aquatic species. However, a recent reappraisal of the method showed that relationships between dynamic body acceleration (DBA) and energy expenditure weaken as the proportion of non-mechanical costs increases. Aquatic air breathing species often exemplify this pattern, as buoyancy, thermoregulation and other physiological mechanisms disproportionately affect oxygen consumption during dives.
View Article and Find Full Text PDFField metabolic rate (FMR) is a holistic measure of metabolism representing the routine energy utilization of a species living within a specific ecological context, thus providing insight into its ecology, fitness and resilience to environmental stressors. For animals that cannot be easily observed in the wild, FMR can also be used in concert with dietary data to quantitatively assess their role as consumers, improving understanding of the trophic linkages that structure food webs and allowing for informed management decisions. Here, we modelled the FMR of Greenland sharks (Somniosus microcephalus) equipped with biologger packages or pop-up archival satellite tags (PSATs) in two coastal inlets of Baffin Island (Nunavut) using metabolic scaling relationships for mass, temperature and activity.
View Article and Find Full Text PDFMetabolic rate is intricately linked to the ecology of organisms and can provide a framework to study the behaviour, life history, population dynamics, and trophic impact of a species. Acquiring measures of metabolic rate, however, has proven difficult for large water-breathing animals such as sharks, greatly limiting our understanding of the energetic lives of these highly threatened and ecologically important fish. Here, we provide the first estimates of resting and active routine metabolic rate for the longest lived vertebrate, the Greenland shark (Somniosus microcephalus).
View Article and Find Full Text PDF