Kagome vanadates AVSb display unusual low-temperature electronic properties including charge density waves (CDW), whose microscopic origin remains unsettled. Recently, CDW order has been discovered in a new material ScVSn, providing an opportunity to explore whether the onset of CDW leads to unusual electronic properties. Here, we study this question using angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling microscopy (STM).
View Article and Find Full Text PDFMoiré excitons are emergent optical excitations in two-dimensional semiconductors with moiré superlattice potentials. Although these excitations have been observed on several platforms, a system with dynamically tunable moiré potential to tailor their properties is yet to be realized. Here we present a continuously tunable moiré potential in monolayer WSe, enabled by its proximity to twisted bilayer graphene (TBG) near the magic angle.
View Article and Find Full Text PDFForming a hetero-interface is a materials-design strategy that can access an astronomically large phase space. However, the immense phase space necessitates a high-throughput approach for an optimal interface design. Here we introduce a high-throughput computational framework, InterMatch, for efficiently predicting charge transfer, strain, and superlattice structure of an interface by leveraging the databases of individual bulk materials.
View Article and Find Full Text PDFAs one of the most fundamental physical phenomena, charge density wave (CDW) order predominantly occurs in metallic systems such as quasi-1D metals, doped cuprates, and transition metal dichalcogenides, where it is well understood in terms of Fermi surface nesting and electron-phonon coupling mechanisms. On the other hand, CDW phenomena in semiconducting systems, particularly at the low carrier concentration limit, are less common and feature intricate characteristics, which often necessitate the exploration of novel mechanisms, such as electron-hole coupling or Mott physics, to explain. In this study, an approach combining electrical transport, synchrotron X-ray diffraction, and density-functional theory calculations is used to investigate CDW order and a series of hysteretic phase transitions in a dilute d-band semiconductor, BaTiS .
View Article and Find Full Text PDFWe investigate heterostructures composed of monolayer WSe stacked on α-RuCl using a combination of Terahertz (THz) and infrared (IR) nanospectroscopy and imaging, scanning tunneling spectroscopy (STS), and photoluminescence (PL). Our observations reveal itinerant carriers in the heterostructure prompted by charge transfer across the WSe/α-RuCl interface. Local STS measurements show the Fermi level is shifted to the valence band edge of WSe which is consistent with p-type doping and verified by density functional theory (DFT) calculations.
View Article and Find Full Text PDF