Publications by authors named "Eric Sciullo"

To assess the effectiveness of selected food phytochemicals in reducing the toxic effects of the environmental toxicants, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and p,p'-DDT (DDT), we tested the potencies of auraptene, nobiletin, zerumbone, and (±)-13-hydroxy-10-oxo-trans-11-octadecenoic acid (13-HOA) in reversing the inflammatory action of these toxicants in U937 human macrophages. Using quantitative RT-PCR as the initial screening assay, we identified antagonistic actions of zerumbone and auraptene against the action of TCDD and DDT in up-regulating the mRNA expressions of COX-2 and VEGF. The functional significance of the inhibitory action of zerumbone on COX-2 expression was confirmed by demonstrating its suppression of TCDD-induced activation of COX-2 gene expression in mouse MMDD1 cells.

View Article and Find Full Text PDF

2,3,7,8-Tetrachlorodibenzo(p)dioxin (TCDD) has been known to induce inflammatory signaling in a number of cell types and tissues. We found that in U937 macrophages TCDD causes rapid activation of cytosolic phospholipase A2 (cPLA2) within 30min as judged by the increase in the serine 505 phosphorylated form of cPLA2 protein and the increased cellular release of free arachidonic acid. This initial action of TCDD is accompanied with the up-regulation of an important inflammation marker, COX-2 mRNA expression within 1h, and by 3h, several other markers become up-regulated.

View Article and Find Full Text PDF

Using 2,3,7,8-tetrachlorodibenzo(p)dioxin (TCDD) we have investigated the mechanisms through which the AhR elicits inflammation through the nongenomic pathway. This AhR signaling depends on the initial action of TCDD to rapidly increase the intracellular concentration of free Ca(2+), which subsequently activates cPLA2 and additional inflammatory markers (e.g.

View Article and Find Full Text PDF

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a well-known immunotoxic compound affecting the expression of inflammatory genes. We found that TCDD induces the expression of the B-cell activating factor of the tumor necrosis factor family (BAFF), B-lymphocyte chemoattractant (BLC), CC-chemokine ligand 1 (CCL1), and the transcription factor interferon gamma responsive factor (IFR3) in U937 macrophages in an aryl hydrocarbon receptor- (AhR) and RelB-dependent manner. The induction was associated with increased binding activity of an AhR/RelB complex without participation of ARNT to a NF-kappaB element that is recognized by the NF-kappaB subunit RelB and localized on promoters of the cytokine and chemokine genes BAFF, BLC, CCL1, and the transcription factor IRF3.

View Article and Find Full Text PDF

The nuclear factor-kappaB (NF-kappaB) transcription factor family has a crucial role in rapid responses to stress and pathogens. We show that the NF-kappaB subunit RelB is functionally associated with the aryl hydrocarbon receptor (AhR) and mediates transcription of chemokines such as IL-8 via activation of AhR and protein kinase A. RelB physically interacts with AhR and binds to an unrecognized RelB/AhR responsive element of the IL-8 promoter linking two signaling pathways to activate gene transcription.

View Article and Find Full Text PDF

Epidemiological studies indicate that exposure to environmental pollutants such as pesticides and dioxins leads to the pathogenesis of lymphoma and leukemia. Here, we show that activation of the aryl hydrocarbon receptor (AhR) by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) resulted in loss of the programmed cell death (apoptosis) response in three different lymphoma cell lines, which plays a key role in the development of cancer, especially lymphoma and leukemia. The AhR-mediated inhibition of apoptosis in vitro was associated with a clear increase of cyclooxygenase-2 (COX-2) and deregulation of genes of the B-cell lymphoma-2 (Bcl-2) family involved in apoptosis including Bcl-xl and Mcl-1 in several lymphoma cell lines.

View Article and Find Full Text PDF

Activation of the aryl hydrocarbon receptor (AhR) by TCDD may lead to the induction of proinflammatory cytokines in various cell types and organs such as liver leading to active chronic inflammation. Here we studied the expression of the chemokines keratinocyte chemoattractant (KC) and monocyte chemoattractant protein 1 (MCP-1) in different organs of mice after exposure to TCDD. TCDD exposure led to an early and clear induction of KC in liver and spleen on day 1 which was sustained over a period of 10 days.

View Article and Find Full Text PDF

Exposure to particulate matter air pollution causes inflammatory responses and is associated with the progression of atherosclerosis and increased cardiovascular mortality. Macrophages play a key role in atherogenesis by releasing proinflammatory cytokines and forming foam cells in subendothelial lesions. The present study quantified the inflammatory response in a human macrophage cell line (U937) after exposure to an ambient particulate sample from urban dust (UDP) and a diesel exhaust particulate (DEP).

View Article and Find Full Text PDF

Epidemiological data and in vivo animal experiments have indicated that exposure to the Ah-receptor (AhR) ligand dioxin and other dioxin-like compounds can lead to cardiovascular toxicity and atherosclerosis. Here, we investigated the effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the most potent AhR ligand, on the differentiation of U937 cells into foam cells, which are considered to be early lesions of atherosclerosis. Our findings show that, like oxidized low-density lipoprotein (oxLDL), TCDD promotes the differentiation of U937 macrophages to atherogenic foam cells, verified by lipid accumulation and extensive formation of blebs on the cell surface, which are characteristics of foam cells.

View Article and Find Full Text PDF

The environmental pollutant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD = dioxin) has been shown to increase the expression of C/EBPbeta. The modulated expression of C/EBPbeta has been suggested to be associated with toxic responses of TCDD such as wasting syndrome, diabetes, and inhibition of adipocyte differentiation. This study focused on the regulatory mechanism of TCDD-mediated transcriptional activation of C/EBPbeta.

View Article and Find Full Text PDF