The Plasmodium ookinete develops over several hours in the bloodmeal of its mosquito vector where it is exposed to exogenous stresses, including cytotoxic reactive oxygen species (ROS). How the parasite adapts to these challenging conditions is not well understood. We have systematically investigated the expression of three cytosolic antioxidant proteins, thioredoxin-1 (Trx-1), peroxiredoxin-1 (TPx-1), and 1-Cys peroxiredoxin (1-Cys Prx), in developing ookinetes of the rodent parasite Plasmodium berghei under various growth conditions.
View Article and Find Full Text PDFConditional targeted cell ablation in zebrafish would greatly expand the utility of this genetic model system in developmental and regeneration studies, given its extensive regenerative capabilities. Here, we show that, by combining chemical and genetic tools, one can ablate cells in a temporal- and spatial-specific manner in zebrafish larvae. For this purpose, we used the bacterial Nitroreductase (NTR) enzyme to convert the prodrug Metronidazole (Mtz) into a cytotoxic DNA cross-linking agent.
View Article and Find Full Text PDFAxonal differentiation of retinal bipolar cells has largely been studied by comparing the morphology of these interneurons in fixed tissue at different ages. To better understand how bipolar axonal terminals develop in vivo, we imaged fluorescently labeled cells in the zebrafish retina using time-lapse confocal and two photon microscopy. Using the upstream regulatory sequences from the nyx gene that encodes nyctalopin, we constructed a transgenic fish in which a subset of retinal bipolar cells express membrane targeted yellow fluorescent protein (MYFP).
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
December 2005
Purpose: In animal models of retinitis pigmentosa, rod photoreceptor degeneration eventually leads to loss of cone photoreceptors. The purpose of this study was to characterize a transgenic model of rod degeneration in zebrafish.
Methods: Zebrafish transgenic for XOPS-mCFP, a membrane-targeted form of cyan fluorescent protein driven by the Xenopus rhodopsin promoter, were generated by plasmid injection.
Cellular mechanisms underlying the precision by which neurons target their synaptic partners have largely been determined based on the study of projection neurons. By contrast, little is known about how interneurons establish their local connections in vivo. Here, we investigated how developing amacrine interneurons selectively innervate the appropriate region of the synaptic neuropil in the inner retina, the inner plexiform layer (IPL).
View Article and Find Full Text PDFNeuronal function depends on the accurate wiring between pre- and postsynaptic cells. Determining the mechanisms underlying precision in neuronal connectivity is challenging because of the complexity of the nervous system. In diverse parts of the nervous system, regions of synaptic contact are organized into distinct parallel layers, or laminae, that are correlated with distinct functions.
View Article and Find Full Text PDFIntramembrane cleaving proteases such as site 2 protease, gamma-secretase, and signal peptide peptidase hydrolyze peptide bonds within the transmembrane domain (TMD) of signaling molecules such as SREBP, Notch, and HLA-E, respectively. All three enzymes require a prior cleavage at the juxtamembrane region by another protease. It has been proposed that removing the extracellular domain allows dissociation of substrate TMD, held together by the extracellular domain or loop.
View Article and Find Full Text PDFNotch receptors and the amyloid precursor protein are type I membrane proteins that are proteolytically cleaved within their transmembrane domains by a presenilin (PS)-dependent gamma-secretase activity. In both proteins, two peptide bonds are hydrolyzed: one near the inner leaflet and the other in the middle of the transmembrane domain. Under saturating conditions the substrates compete with each other for proteolysis, but not for binding to PS.
View Article and Find Full Text PDF