Objective: Duplication of the maternal chromosome 15q11.2-q13.1 region causes Dup15q syndrome, a highly penetrant neurodevelopmental disorder characterized by severe autism and refractory seizures.
View Article and Find Full Text PDFChromosome 15q11-q13 duplication syndrome (Dup15q) is a neurodevelopmental disorder caused by maternal duplications of this region. Autism and epilepsy are key features of Dup15q. UBE3A, which encodes an E3 ubiquitin ligase, is likely a major driver of Dup15q because UBE3A is the only imprinted gene expressed solely from the maternal allele.
View Article and Find Full Text PDFVolume hyposensitivity resulting from impaired sympathetic detrusor relaxation during bladder filling contributes to detrusor underactivity (DU) associated with aging. Detrusor tension regulation provides an adaptive sensory input of bladder volume to the brainstem and is challenged by physiological stressors superimposed upon biological aging. We recently showed that HCN channels have a stabilizing role in detrusor sympathetic relaxation.
View Article and Find Full Text PDFFront Cell Neurosci
September 2022
It is widely accepted that exogenous cannabinoids can impair short-term memory and cognition in humans and other animals. This is likely related to the inhibition of long-term potentiation (LTP), a form of synaptic plasticity, by the global and sustained activation of CB1 cannabinoid receptors in the presence of exogenous agonists. Conversely, the temporally and spatially restricted release of endogenous cannabinoid (eCB) ligands may enhance synaptic plasticity in a synapse-specific manner.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
July 2022
Control of urinary continence is predicated on sensory signaling about bladder volume. Bladder sensory nerve activity is dependent on tension, implicating autonomic control over detrusor myocyte activity during bladder filling. Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels are known contributors to bladder control, but their mechanism of action is not well understood.
View Article and Find Full Text PDFBackground: Chromosome 15q11-q13 duplication syndrome (Dup15q) is a neurogenetic disorder caused by duplications of the maternal copy of this region. In addition to hypotonia, motor deficits, and language impairments, patients with Dup15q commonly meet the criteria for autism spectrum disorder and have a high prevalence of seizures. It is known from mouse models that synaptic impairments are a strong component of Dup15q pathophysiology; however, cellular phenotypes that relate to seizures are less clear.
View Article and Find Full Text PDFLoss of UBE3A expression, a gene regulated by genomic imprinting, causes Angelman syndrome (AS), a rare neurodevelopmental disorder. The UBE3A gene encodes an E3 ubiquitin ligase with three known protein isoforms in humans. Studies in mouse suggest that the human isoforms may have differences in localization and neuronal function.
View Article and Find Full Text PDFThe chromosome 15q11-q13 region of the human genome is regulated by genomic imprinting, an epigenetic phenomenon in which genes are expressed exclusively from one parental allele. Several genes within the 15q11-q13 region are expressed exclusively from the paternally inherited chromosome 15. At least one gene UBE3A, shows exclusive expression of the maternal allele, but this allele-specific expression is restricted to neurons.
View Article and Find Full Text PDFBackground: There is growing evidence that the anticonvulsant topiramate is efficacious in reducing alcohol consumption. Further, an intronic single nucleotide polymorphism (rs2832407, C A) in the GRIK1 gene, which encodes the GluK1 subunit of the excitatory kainate receptor, predicted topiramate's effectiveness in reducing heavy drinking in a clinical trial. The molecular correlates of GRIK1 genotype that may relate to topiramate's ability to reduce drinking remain unknown.
View Article and Find Full Text PDFBrain-derived neurotrophic factor (BDNF), traditionally known for promoting neuronal growth and development, is also a modulator of synaptic transmission. In addition to the well-characterized effects at excitatory synapses, BDNF has been shown to acutely suppress inhibitory neurotransmission; however, the underlying mechanisms are unclear. We have previously shown that at inhibitory synapses in layer 2/3 of the somatosensory cortex, BDNF induces the mobilization of endogenous cannabinoids (eCBs) that act retrogradely to suppress GABA release.
View Article and Find Full Text PDFAnimal models of neurodevelopmental disorders have provided invaluable insights into the molecular-, cellular-, and circuit-level defects associated with a plethora of genetic disruptions. In many cases, these deficits have been linked to changes in disease-relevant behaviors, but very few of these findings have been translated to treatments for human disease. This may be due to significant species differences and the difficulty in modeling disorders that involve deletion or duplication of multiple genes.
View Article and Find Full Text PDFFactors influencing the development of alcohol-use disorder (AUD) are complex and heterogeneous. While animal models have been crucial to identifying actions of alcohol on neural cells, human-derived in vitro systems that reflect an individual's genetic background hold promise in furthering our understanding of the molecular and functional effects of alcohol exposure and the pathophysiology of AUD. In this report, we utilized induced pluripotent stem cell (iPSCs)-derived neural cell cultures obtained from healthy individuals (CTLs) and those with alcohol dependence (ADs) to 1) examine the effect of 21-day alcohol exposure on mRNA expression of three genes encoding GABA receptor subunits (GABRA1, GABRG2, and GABRD) using quantitative PCR, and 2) examine the effect of acute and chronic alcohol exposure on GABA-evoked currents using whole-cell patch-clamp electrophysiology.
View Article and Find Full Text PDFAngelman syndrome (AS) is a neurogenetic disorder caused by deletion of the maternally inherited UBE3A allele and is characterized by developmental delay, intellectual disability, ataxia, seizures and a happy affect. Here, we explored the underlying pathophysiology using induced pluripotent stem cell-derived neurons from AS patients and unaffected controls. AS-derived neurons showed impaired maturation of resting membrane potential and action potential firing, decreased synaptic activity and reduced synaptic plasticity.
View Article and Find Full Text PDFEndocannabinoids (eCBs) and neurotrophins, particularly brain-derived neurotrophic factor (BDNF), are potent neuromodulators found throughout the mammalian neocortex. Both eCBs and BDNF play critical roles in many behavioral and neurophysiological processes and are targets for the development of novel therapeutics. The effects of eCBs and BDNF are primarily mediated by the type 1 cannabinoid (CB1) receptor and the trkB tyrosine kinase receptor, respectively.
View Article and Find Full Text PDFAutism spectrum disorders (ASDs) are diagnosed on the basis of three behavioral features, namely, (1) deficits in social communication, (2) absence or delay in language and (3) stereotypy. The consensus regarding the neurological pathogenesis of ASDs is aberrant synaptogenesis and synapse function. Further, it is now widely accepted that ASD is neurodevelopmental in nature, placing emphasis on derangements occurring at the level of intra- and intercellular signaling during corticogenesis.
View Article and Find Full Text PDFIn peripheral blood leukocytes, FKBP5 mRNA expression is upregulated following glucocorticoid receptor activation. The single nucleotide polymorphism rs1360780 in FKBP5 is associated with psychiatric illness and has functional molecular effects. However, examination of FKBP5 regulation has largely been limited to peripheral cells, which may not reflect regulation in neural cells.
View Article and Find Full Text PDFThe endogenous cannabinoid (endocannabinoid) system is an important regulator of synaptic function. Endocannabinoids acutely modulate inhibitory and excitatory transmission, and also mediate long-term depression at GABAergic and glutamatergic synapses. Typically, endocannabinoid synthesis and release is stimulated by depolarization-induced calcium influx and/or activation of phospholipase-C (PLC) signaling triggered by mGluR activation.
View Article and Find Full Text PDFBackground: Duplications of the chromosome 15q11-q13.1 region are associated with an estimated 1 to 3% of all autism cases, making this copy number variation (CNV) one of the most frequent chromosome abnormalities associated with autism spectrum disorder (ASD). Several genes located within the 15q11-q13.
View Article and Find Full Text PDFEndogenous cannabinoids (endocannabinoids) and neurotrophins, particularly brain-derived neurotrophic factor (BDNF), are potent synaptic modulators that are expressed throughout the forebrain and play critical roles in many behavioral processes. Although the effects of BDNF at excitatory synapses have been well characterized, the mechanisms of action of BDNF at inhibitory synapses are not well understood. Previously we have found that BDNF suppresses presynaptic GABA release in layer 2/3 of the neocortex via postsynaptic tropomyosin-related kinase receptor B (trkB) receptor-induced release of endocannabinoids.
View Article and Find Full Text PDFEndocannabinoids (eCBs) play a prominent role in regulating synaptic signaling throughout the brain. In layer 2/3 of the neocortex, eCB-mediated suppression of GABA release results in an enhanced excitability of pyramidal neurons (PNs). The eCB system is also involved in spike timing-dependent plasticity that is dependent on backpropagating action potentials (bAPs).
View Article and Find Full Text PDFBackground: Studies of the effects of alcohol on N-methyl-d-aspartate (NMDA) receptor function and gene expression have depended on rodent or postmortem human brain models. Ideally, the effects of alcohol might better be examined in living neural tissue derived from human subjects. In this study, we used new technologies to reprogram human subject-specific tissue into pluripotent cell colonies and generate human neural cultures as a model system to examine the molecular actions of alcohol.
View Article and Find Full Text PDFThe anticonvulsant properties of marijuana have been known for centuries. The recently characterized endogenous cannabinoid system thus represents a promising target for novel anticonvulsant agents; however, administration of exogenous cannabinoids has shown mixed results in both human epilepsy and animal models. The ability of cannabinoids to attenuate release of both excitatory and inhibitory neurotransmitters may explain the variable effects of cannabinoids in different models of epilepsy, but this has not been well explored.
View Article and Find Full Text PDFBackground: Dendritic spines represent the postsynaptic component of the vast majority of excitatory synapses present in the mammalian forebrain. The ability of spines to rapidly alter their shape, size, number and receptor content in response to stimulation is considered to be of paramount importance during the development of synaptic plasticity. Indeed, long-term potentiation (LTP), widely believed to be a cellular correlate of learning and memory, has been repeatedly shown to induce both spine enlargement and the formation of new dendritic spines.
View Article and Find Full Text PDFThe ability of dendritic spines to change size and shape rapidly is critical in modulating synaptic strength; these morphological changes are dependent upon rearrangements of the actin cytoskeleton. Kalirin-7 (Kal7), a Rho guanine nucleotide exchange factor localized to the postsynaptic density (PSD), modulates dendritic spine morphology in vitro and in vivo. Kal7 activates Rac and interacts with several PSD proteins, including PSD-95, DISC-1, AF-6, and Arf6.
View Article and Find Full Text PDF