Publications by authors named "Eric S Diffenderfer"

Objectives: Radiotherapy manages pancreatic cancer in various settings; however, the proximity of gastrointestinal (GI) luminal organs-at-risk (OAR) poses challenges to conventional radiotherapy. Proton beam therapy (PBT) may reduce toxicities compared to photon therapy. This consensus statement summarizes PBT's safe and optimal delivery for pancreatic tumors.

View Article and Find Full Text PDF

Here, we present a bioengineering approach to emulate the human bone marrow in vitro. Our developmentally inspired method uses self-organization of human hematopoietic stem and progenitor cells and vascular endothelial cells cultured in a three-dimensional microphysiological system to create vascularized, perfusable tissue constructs that resemble the hematopoietic vascular niche of the human marrow. The microengineered niche is capable of multilineage hematopoiesis and can generate functionally mature human myeloid cells that can intravasate into perfused blood vessels, providing a means to model the mobilization of innate immune cells from the marrow.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) represents a challenge in oncology, with limited treatment options for advanced-stage patients. Chimeric antigen receptor T cell (CAR T) therapy targeting mesothelin (MSLN) shows promise, but challenges such as the hostile immunosuppressive tumor microenvironment (TME) hinder its efficacy. This study explores the synergistic potential of combining proton radiation therapy (RT) with MSLN-targeting CAR T therapy in a syngeneic PDAC model.

View Article and Find Full Text PDF

Background And Purpose: The normal tissue sparing afforded by FLASH radiotherapy (RT) is being intensely investigated for potential clinical translation. Here, we studied the effects of FLASH proton RT (F-PRT) in the reirradiation setting, with or without hypofractionation. Chronic toxicities in three murine models of normal tissue toxicity including the intestine, skin, and bone were investigated.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the use of aluminum as a range shifter in UHDR proton therapy, aiming to harness its compactness and mechanical properties while acknowledging its higher potential for producing secondary neutrons compared to plastic shifters.!* -
  • Neutron dosimetry was conducted through simulations and measurements to assess the increased neutron exposure during proton irradiation with aluminum range shifters, utilizing Monte Carlo simulations for accuracy.!* -
  • Results showed that the secondary neutron production characteristics of aluminum were evaluated against IEC standards to determine the clinical implications and potential cancer risks associated with neutron exposure in patients.!*
View Article and Find Full Text PDF

Head and neck cancer radiotherapy often damages salivary glands and oral mucosa, severely negatively impacting patients' quality of life. The ability of FLASH proton radiotherapy (F-PRT) to decrease normal tissue toxicity while maintaining tumor control compared with standard proton radiotherapy (S-PRT) has been previously demonstrated for several tissues. However, its potential in ameliorating radiation-induced salivary gland dysfunction and oral mucositis and controlling orthotopic head and neck tumor growth has not been reported.

View Article and Find Full Text PDF

FLASH is an emerging treatment paradigm in radiotherapy (RT) that utilizes ultra-high dose rates (UHDR; >40 Gy)/s) of radiation delivery. Developing advances in technology support the delivery of UHDR using electron and proton systems, as well as some ion beam units (eg, carbon ions), while methods to achieve UHDR with photons are under investigation. The major advantage of FLASH RT is its ability to increase the therapeutic index for RT by shifting the dose response curve for normal tissue toxicity to higher doses.

View Article and Find Full Text PDF

Purpose: Studies during the past 9 years suggest that delivering radiation at dose rates exceeding 40 Gy/s, known as "FLASH" radiation therapy, enhances the therapeutic index of radiation therapy (RT) by decreasing normal tissue damage while maintaining tumor response compared with conventional (or standard) RT. This study demonstrates the cardioprotective benefits of FLASH proton RT (F-PRT) compared with standard (conventional) proton RT (S-PRT), as evidenced by reduced acute and chronic cardiac toxicities.

Methods And Materials: Mice were imaged using cone beam computed tomography to precisely determine the heart's apex as the beam isocenter.

View Article and Find Full Text PDF

Allogeneic invariant natural killer T cells (allo-iNKTs) induce clinical remission in patients with otherwise incurable cancers and COVID-19-related acute respiratory failure. However, their functionality is inconsistent among individuals, and they become rapidly undetectable after infusion, raising concerns over rejection and limited therapeutic potential. We validate a strategy to promote allo-iNKT persistence in dogs, an established large-animal model for novel cellular therapies.

View Article and Find Full Text PDF

FLASH radiation therapy (FLASH-RT), delivered with ultrahigh dose rate (UHDR), may allow patients to be treated with less normal tissue toxicity for a given tumor dose compared with currently used conventional dose rate. Clinical trials are being carried out and are needed to test whether this improved therapeutic ratio can be achieved clinically. During the clinical trials, quality assurance and credentialing of equipment and participating sites, particularly pertaining to UHDR-specific aspects, will be crucial for the validity of the outcomes of such trials.

View Article and Find Full Text PDF

Introduction: Radiation-induced oxygen depletion in tissue is assumed as a contributor to the FLASH sparing effects. In this study, we simulated the heterogeneous oxygen depletion in the tissue surrounding the vessels and calculated the proton FLASH effective-dose-modifying factor (FEDMF), which could be used for biology-based treatment planning.

Methods: The dose and dose-weighted linear energy transfer (LET) of a small animal proton irradiator was simulated with Monte Carlo simulation.

View Article and Find Full Text PDF

We evaluate radiomic phenotypes derived from CT scans as early predictors of overall survival (OS) after chemoradiation in stage III primary lung adenocarcinoma. We retrospectively analyzed 110 thoracic CT scans acquired between April 2012-October 2018. Patients received a median radiation dose of 66.

View Article and Find Full Text PDF

3D patient-derived organoids (PDOs) have been utilized to evaluate potential therapies for patients with different cancers. However, the use of PDOs created from treatment-naive patient biopsies for prediction of clinical outcomes in patients with esophageal cancer has not yet been reported. Herein we describe a pilot prospective observational study with the goal of determining whether esophageal cancer PDOs created from treatment naive patients can model or predict clinical outcomes.

View Article and Find Full Text PDF

We review the current status of proton FLASH experimental systems, including preclinical physical and biological results. Technological limitations on preclinical investigation of FLASH biological mechanisms and determination of clinically relevant parameters are discussed. A review of the biological data reveals no reproduced proton FLASH effect in vitro and a significant in vivo FLASH sparing effect of normal tissue toxicity observed with multiple proton FLASH irradiation systems.

View Article and Find Full Text PDF
Article Synopsis
  • Ultra-high dose rate FLASH proton radiotherapy (F-PRT) was tested against standard dose rate proton radiotherapy (S-PRT) in mouse intestines to see its effects on tissue toxicity and regeneration.
  • The study involved irradiating mice using both F-PRT and S-PRT in two regions: the entrance area and the spread-out Bragg peak (SOBP), and measuring the proliferation of intestinal cells post-treatment.
  • Results indicated that F-PRT allowed for better preservation of healthy intestinal cells and crypt structures than S-PRT, with no significant differences in tumor growth between the two treatment methods.
View Article and Find Full Text PDF

Introduction: Ultra-high dose rate (FLASH) radiotherapy has become a popular research topic with the potential to reduce normal tissue toxicities without losing the benefit of tumor control. The development of FLASH proton pencil beam scanning (PBS) delivery requires accurate dosimetry despite high beam currents with correspondingly high ionization densities in the monitoring chamber. In this study, we characterized a newly designed high-resolution position sensing transmission ionization chamber with a purpose-built multichannel electrometer for both conventional and FLASH dose rate proton radiotherapy.

View Article and Find Full Text PDF

Purpose: Proton Pencil Beam Scanning (PBS) is an attractive solution to realize the advantageous normal tissue sparing elucidated from FLASH high dose rates. The mechanics of PBS spot delivery will impose limitations on the effective field dose rate for PBS.

Methods: This study incorporates measurements from clinical and FLASH research beams on uniform single energy and the spread-out Bragg Peak PBS fields to extrapolate the PBS dose rate to high cyclotron beam currents 350, 500, and 800 nA.

View Article and Find Full Text PDF

Background And Purpose: Radiation esophagitis is a clinically important toxicity seen with treatment for locally-advanced non-small cell lung cancer. There is considerable disagreement among prior studies in identifying predictors of radiation esophagitis. We apply machine learning algorithms to identify factors contributing to the development of radiation esophagitis to uncover previously unidentified criteria and more robust dosimetric factors.

View Article and Find Full Text PDF

Purpose: Recent studies suggest that ultrahigh-dose-rate, "FLASH," electron radiation therapy (RT) decreases normal tissue damage while maintaining tumor response compared with conventional dose rate RT. Here, we describe a novel RT apparatus that delivers FLASH proton RT (PRT) using double scattered protons with computed tomography guidance and provide the first report of proton FLASH RT-mediated normal tissue radioprotection.

Methods And Materials: Absolute dose was measured at multiple depths in solid water and validated against an absolute integral charge measurement using a Faraday cup.

View Article and Find Full Text PDF

The expansion of machine learning to high-stakes application domains such as medicine, finance, and criminal justice, where making informed decisions requires clear understanding of the model, has increased the interest in interpretable machine learning. The widely used Classification and Regression Trees (CART) have played a major role in health sciences, due to their simple and intuitive explanation of predictions. Ensemble methods like gradient boosting can improve the accuracy of decision trees, but at the expense of the interpretability of the generated model.

View Article and Find Full Text PDF

Small animal x-ray irradiation platforms are expanding the capabilities and future pathways for radiobiology research. Meanwhile, proton radiotherapy is transitioning to a standard treatment modality in the clinician's precision radiotherapy toolbox, highlighting a gap between state-of-the-art clinical radiotherapy and small animal radiobiology research. Comparative research of the biological differences between proton and x-ray beams could benefit from an integrated small animal irradiation system for in vivo experiments and corresponding quality assurance (QA) protocols to ensure rigor and reproducibility.

View Article and Find Full Text PDF

Background And Purpose: Radiation pneumonitis (RP) is a radiotherapy dose-limiting toxicity for locally advanced non-small cell lung cancer (LA-NSCLC). Prior studies have proposed relevant dosimetric constraints to limit this toxicity. Using machine learning algorithms, we performed analyses of contributing factors in the development of RP to uncover previously unidentified criteria and elucidate the relative importance of individual factors.

View Article and Find Full Text PDF

The space environment exposes astronauts to risks of acute and chronic exposure to ionizing radiation. Of particular concern is possible exposure to ionizing radiation from a solar particle event (SPE). During an SPE, magnetic disturbances in specific regions of the Sun result in the release of intense bursts of ionizing radiation, primarily consisting of protons that have a highly variable energy spectrum.

View Article and Find Full Text PDF

The left anterior descending (LAD, interventricular) coronary artery provides the blood supply to the mid-region of the heart and is a major site of vessel stenosis. Changes in LAD function can have major effects on heart function. In this report, we examined the effect of electron simulated solar particle event (eSPE) radiation on LAD function in a porcine animal model.

View Article and Find Full Text PDF