Translocator protein (TSPO) is a validated target for molecular imaging of a variety of human diseases and disorders. Given its involvement in cholesterol metabolism, TSPO expression is commonly elevated in solid tumors, including glioma, colorectal cancer, and breast cancer. TSPO ligands capable of detection by optical imaging are useful molecular tracers for a variety of purposes that range from quantitative biology to drug discovery.
View Article and Find Full Text PDFHerein, we report the discovery and structure-activity relationships (SAR) of 2-substituted glutamylanilides as novel probes of the steric environment comprising the amino acid binding domain of alanine-serine-cysteine transporter subtype 2 (ASCT2). Focused library development led to three novel, highly potent ASCT2 inhibitors, with N-(2-(morpholinomethyl)phenyl)-L-glutamine exhibiting the greatest potency in a live-cell glutamine uptake assay. This level of potency represents a three-fold improvement over the most potent, previously reported inhibitor in this series, GPNA.
View Article and Find Full Text PDFPurpose: Apoptosis, or programmed cell death, can be leveraged as a surrogate measure of response to therapeutic interventions in medicine. Cysteine aspartic acid-specific proteases, or caspases, are essential determinants of apoptosis signaling cascades and represent promising targets for molecular imaging. Here, we report development and in vivo validation of [(18)F]4-fluorobenzylcarbonyl-Val-Ala-Asp(OMe)-fluoromethylketone ([(18)F]FB-VAD-FMK), a novel peptide-based molecular probe suitable for quantification of caspase activity in vivo using positron emission tomography (PET).
View Article and Find Full Text PDFRecent industry-academic partnerships involve collaboration among disciplines, locations, and organizations using publicly funded "open-access" and proprietary commercial data sources. These require the effective integration of chemical and biological information from diverse data sources, which presents key informatics, personnel, and organizational challenges. The BioAssay Research Database (BARD) was conceived to address these challenges and serve as a community-wide resource and intuitive web portal for public-sector chemical-biology data.
View Article and Find Full Text PDFA high-throughput screen of the NIH molecular libraries sample collection and subsequent optimization of a lead dipeptide-like series of severe acute respiratory syndrome (SARS) main protease (3CLpro) inhibitors led to the identification of probe compound ML188 (16-(R), (R)-N-(4-(tert-butyl)phenyl)-N-(2-(tert-butylamino)-2-oxo-1-(pyridin-3-yl)ethyl)furan-2-carboxamide, Pubchem CID: 46897844). Unlike the majority of reported coronavirus 3CLpro inhibitors that act via covalent modification of the enzyme, 16-(R) is a noncovalent SARS-CoV 3CLpro inhibitor with moderate MW and good enzyme and antiviral inhibitory activity. A multicomponent Ugi reaction was utilized to rapidly explore structure-activity relationships within S(1'), S(1), and S(2) enzyme binding pockets.
View Article and Find Full Text PDFHerein we report the discovery and SAR of a novel series of non-MPEP site metabotropic glutamate receptor 5 (mGlu(5)) positive allosteric modulators (PAMs) based on an aryl glycine sulfonamide scaffold. This series represents a rare non-MPEP site mGlu(5) PAM chemotype.
View Article and Find Full Text PDFActivation of metabotropic glutamate receptor subtype 4 has been shown to be efficacious in rodent models of Parkinson's disease. Artificial neural networks were trained based on a recently reported high throughput screen which identified 434 positive allosteric modulators of metabotropic glutamate receptor subtype 4 out of a set of approximately 155,000 compounds. A jury system containing three artificial neural networks achieved a theoretical enrichment of 15.
View Article and Find Full Text PDFT-type Ca(2+) channel inhibitors hold tremendous therapeutic potential for the treatment of pain, epilepsy, sleep disorders, essential tremor and other neurological disorders; however, a lack of truly selective tools has hindered basic research, and selective tools from the pharmaceutical industry are potentially burdened with intellectual property (IP) constraints. Thus, an MLPCN high-throughput screen (HTS) was conducted to identify novel T-type Ca(2+) channel inhibitors free from IP constraints, and freely available through the MLPCN, for use by the biomedical community to study T-type Ca(2+) channels. While the HTS provided numerous hits, these compounds could not be optimized to the required level of potency to be appropriate tool compounds.
View Article and Find Full Text PDFHypoxia and ischemia are linked to several serious public health problems that affect most major organ systems. Specific examples include diseases of the cardiovascular, pulmonary, renal, neurologic, and musculoskeletal systems. The most significant pathway for cellular response to hypoxia is the hypoxia inducible factor (HIF) pathway.
View Article and Find Full Text PDFNa(+)- and Cl(-)-dependent uptake of neurotransmitters via transporters of the SLC6 family, including the human serotonin transporter (SLC6A4), is critical for efficient synaptic transmission. Although residues in the human serotonin transporter involved in direct Cl(-) coordination of human serotonin transport have been identified, the role of Cl(-) in the transport mechanism remains unclear. Through a combination of mutagenesis, chemical modification, substrate and charge flux measurements, and molecular modeling studies, we reveal an unexpected role for the highly conserved transmembrane segment 1 residue Asn-101 in coupling Cl(-) binding to concentrative neurotransmitter uptake.
View Article and Find Full Text PDFThe K(ir) inward rectifying potassium channels have a broad tissue distribution and are implicated in a variety of functional roles. At least seven classes (K(ir)1-K(ir)7) of structurally related inward rectifier potassium channels are known, and there are no selective small molecule tools to study their function. In an effort to develop selective K(ir)2.
View Article and Find Full Text PDFThe renal outer medullary potassium (K+) channel, ROMK (Kir1.1), is a putative drug target for a novel class of loop diuretic that would lower blood volume and pressure without causing hypokalemia. However, the lack of selective ROMK inhibitors has hindered efforts to assess its therapeutic potential.
View Article and Find Full Text PDF