Lynch syndrome (LS) is a common hereditary cancer syndrome caused by heterozygous germline pathogenic variants in DNA mismatch repair (MMR) genes. Splicing defect constitutes one of the major mechanisms for MMR gene inactivation. Using RT-PCR based RNA analysis, we investigated 24 potential spliceogenic variants in MMR genes and determined their pathogenicity based on refined splicing-related American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) criteria.
View Article and Find Full Text PDFGenes Chromosomes Cancer
January 2024
Background: The MLH1 gene is one of the DNA mismatch repair genes (MMR), implicated in Lynch syndrome (LS), an autosomal dominant hereditary tumor susceptibility disease. The advent of next-generation sequencing (NGS) technologies has accelerated the diagnosis of inherited diseases and increased the percentage of diagnosis of inherited cancers. However, some complex genomic alterations require the combination of several analytical strategies to allow correct biological interpretations.
View Article and Find Full Text PDFThe PMS2 gene is one of the DNA mismatch repair genes (MMR) implicated in Lynch syndrome (LS). A subset of PMS2 pathogenic variants (PVs) are splice variants mostly affecting canonical GT/AG splicing sequences. However, the majority of the intronic variants outside canonical splice sites remained as variants of unknown significance, even though some of them would alter the splicing process.
View Article and Find Full Text PDFPatients with tumors displaying high microsatellite instability (MSI-H) but no germline MMR inactivation are suspected for Lynch-like syndrome (LLS). To explore the involvement of acquired somatic MMR alteration as a cause, we screened 113 patient tumor samples for MMR gene variations and loss of heterozygosity. Somatic MMR alterations were found in 85.
View Article and Find Full Text PDFConstitutional epimutation is one of the causes for MLH1 gene inactivation associated with hereditary non-polyposis colon cancer (HNPCC) syndrome. Here we investigate MLH1 promoter hypermethylation in 110 sporadic early-onset colorectal cancer patients. Variable levels of hypermethylation were detected in 55 patients (50%).
View Article and Find Full Text PDFSince the first report by our group in 1999, more than 20 unrelated biallelic mutations in DNA mismatch repair genes (MMR) have been identified. In the present report, we describe two novel cases: one carrying compound heterozygous mutations in the MSH6 gene; and the other, compound heterozygous mutations in the PMS2 gene. Interestingly, the inactivation of one PMS2 allele was likely caused by gene conversion.
View Article and Find Full Text PDFA substantial proportion of MLH1 and MSH2 gene mutations in hereditary nonpolyposis colon cancer syndrome (HNPCC) families are characterized by nucleotide substitutions, either within the coding sequence (missense or silent mutations) or in introns. The question of whether these mutations affect the normal function of encoding mismatch DNA repair proteins and thus lead to the predisposition to cancer is determinant in genetic testing. Recent studies have suggested that some nucleotide substitutions can induce aberrant splicing by disrupting cis-transcription elements such as exonic enhancers (ESEs).
View Article and Find Full Text PDFDNA mismatch repair (MMR) is the process by which incorrectly paired DNA nucleotides are recognized and repaired. A germline mutation in one of the genes involved in the process may be responsible for a dominantly inherited cancer syndrome, hereditary nonpolyposis colon cancer. Cancer progression in predisposed individuals results from the somatic inactivation of the normal copy of the MMR gene, leading to a mutator phenotype affecting preferentially repeat sequences (microsatellite instability, MSI).
View Article and Find Full Text PDF