Magnesium-doped hydroxyapatite (HAp-Mg) nanofibers show promise for medical applications due to their structural similarity to bone minerals and enhanced biological properties, such as improved biocompatibility and antimicrobial activity. This study synthesized HAp-Mg nanofibers using a microwave-assisted hydrothermal method (MAHM) to evaluate their cytotoxicity, biocompatibility, and antimicrobial efficacy compared to commercial hydroxyapatite (HAp). Characterization through X-ray diffraction (XRD), scanning electron microscopy (SEM), Transmission Electron Microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR) confirmed the successful incorporation of magnesium, producing high-purity, crystalline nanofibers with hexagonal morphology.
View Article and Find Full Text PDFMaterials (Basel)
July 2022
Mater Sci Eng C Mater Biol Appl
November 2020
The tortilla is a foodstuff that has a short shelf-life, causing great losses to the industry. The objective of this work was to evaluate, for the first time, the physicochemical properties and resistant starch (RS) content of flours. These were obtained from nixtamalized corn tortillas made with traditional and industrial (commercial) methods, stored at 4 °C for 7, 15, and 30 days.
View Article and Find Full Text PDFBiogas methane content is a relevant variable in anaerobic digestion processing where knowledge of process kinetics or an early indicator of digester failure is needed. The contribution of this work is the development of a novel, simple and low cost automatic carbon dioxide-methane gas sensor based on the solubility of gases in water as the precursor of a sensor for biogas quality monitoring. The device described in this work was used for determining the composition of binary mixtures, such as carbon dioxide-methane, in the range of 0-100%.
View Article and Find Full Text PDF