Antibiotic resistance continues to pose significant health challenges. Considering severe limitations in the discovery and supply of new antibiotics, there is an unmet need to design alternative and more effective strategies for addressing this global issue. Use of polymeric nanoparticles with cationic shell surfaces offers a highly promising approach to coupling their inherent bactericidal action with sustained delivery of small lipophilic microbicides.
View Article and Find Full Text PDFFront Cardiovasc Med
March 2024
Introduction: The progression of coronary atherosclerosis is an active and regulated process. The Wnt signaling pathway is thought to play an active role in the pathogenesis of several cardiovascular diseases; however, a better understanding of this system in atherosclerosis is yet to be unraveled.
Methods: In this study, real-time quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting were used to quantify the expression of Wnt3a, Wnt5a, and Wnt5b in the human coronary plaque, and immunohistochemistry was used to identify sites of local expression.
The design of multistimuli-responsive soft nanoparticles (NPs) often presents synthetic complexities and limited breadth in exploiting changes surrounding physiological environments. Nanocarriers that could collectively take advantage of several endogenous stimuli can offer a powerful tool in nanomedicine. Herein, we have capitalized on the chemical versatility of a single tertiary amine to construct miktoarm polymer-based nanocarriers that respond to dissolved CO, varied pH, reactive oxygen species (ROS), and ROS + CO.
View Article and Find Full Text PDFBackground: Polymorphisms in the adenylate cyclase 9 (ADCY9) gene influence the benefits of the cholesteryl ester transfer protein (CETP) modulator dalcetrapib on cardiovascular events after acute coronary syndrome. We hypothesized that Adcy9 inactivation could improve cardiac function and remodelling following myocardial infarction (MI) in absence of CETP activity.
Methods: Wild-type (WT) and Adcy9-inactivated (Adcy9) male mice, transgenic or not for human CETP (tgCETP), were subjected to MI by permanent left anterior descending coronary artery ligation and studied for 4 weeks.
The large HDL particles generated by administration of cholesteryl ester transfer protein inhibitors (CETPi) remain poorly characterized, despite their potential importance in the routing of cholesterol to the liver for excretion, which is the last step of the reverse cholesterol transport. Thus, the effects of the CETPi dalcetrapib and anacetrapib on HDL particle composition were studied in rabbits and humans. The association of rabbit HDL to the LDL receptor (LDLr) in vitro was also evaluated.
View Article and Find Full Text PDFBackground: Obstructive sleep apnea (OSA) is linked to an accelerated risk of cardiovascular disease (CVD). Some key CVD risk factors are present in patients suffering from OSA such as hypertension, inflammation, oxidative stress, and dyslipidemia. High-density lipoprotein (HDL) cholesterol efflux capacity (CEC) is proposed as a reliable biomarker of HDL function and the present study aimed to quantify this biomarker in patients with OSA.
View Article and Find Full Text PDFAims: The adenylate cyclase type 9 (ADCY9) gene appears to determine atherosclerotic outcomes in patients treated with dalcetrapib. In mice, we recently demonstrated that Adcy9 inactivation potentiates endothelial function and inhibits atherogenesis. The objective of this study was to characterize the contribution of ADCY9 to the regulation of endothelial signalling pathways involved in atherosclerosis.
View Article and Find Full Text PDFPharmacogenomic studies have revealed associations between rs1967309 in the adenylyl cyclase type 9 () gene and clinical responses to the cholesteryl ester transfer protein (CETP) modulator dalcetrapib, however, the mechanism behind this interaction is still unknown. Here, we characterized selective signals at the locus associated with the pharmacogenomic response in human populations and we show that rs1967309 region exhibits signatures of positive selection in several human populations. Furthermore, we identified a variant in , rs158477, which is in long-range linkage disequilibrium with rs1967309 in the Peruvian population.
View Article and Find Full Text PDFBackground And Aims: The anti-inflammatory agent colchicine is gaining interest as a treatment for coronary artery disease. However, the effects of colchicine in atherosclerotic animal models are mostly unknown. This study aimed to evaluate colchicine in a rabbit model of atherosclerosis.
View Article and Find Full Text PDFThe severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) 3CL protease is a promising target for inhibition of viral replication by interaction with a cysteine residue (Cys145) at its catalytic site. Dalcetrapib exerts its lipid-modulating effect by binding covalently to cysteine 13 of a cholesteryl ester transfer protein. Because 12 free cysteine residues are present in the 3CL protease, we investigated the potential of dalcetrapib to inhibit 3CL protease activity and SARS-CoV-2 replication.
View Article and Find Full Text PDFBackground: We previously demonstrated that high-density lipoprotein (HDL) infusions may improve left ventricular diastolic dysfunction (LVDD) in an aortic valve stenosis (AVS) model. Whether the benefit was direct or mediated by the observed reduction in AVS severity is not clear. Here, we aimed to test the direct effect of an ApoA-I mimetic on LVDD in the absence of AVS.
View Article and Find Full Text PDFThe acute respiratory distress syndrome (ARDS) is characterized by intense dysregulated inflammation leading to acute lung injury (ALI) and respiratory failure. There are no effective pharmacologic therapies for ARDS. Colchicine is a low-cost, widely available drug, effective in the treatment of inflammatory conditions.
View Article and Find Full Text PDFBackground: Left ventricular diastolic dysfunction (LVDD) is present in more than 50% of patients suffering from heart failure. LVDD animal models are limited and its underlying mechanisms remain largely unknown. Aortic valve stenosis (AVS) may cause LVDD, and we recently reported LVDD in an AVS rabbit model.
View Article and Find Full Text PDFThis study aimed to evaluate the feasibility and accuracy of a technique for atherosclerosis imaging using local delivery of relatively small quantities (0.04-0.4 mg/kg) of labeled-specific imaging tracers targeting ICAM-1 and unpolymerized type I collagen or negative controls in 13 rabbits with atheroma induced by balloon injury in the abdominal aorta and a 12-week high-cholesterol diet.
View Article and Find Full Text PDFGold nanostructures that can be synthetically articulated to adapt diverse morphologies, offer a versatile platform and tunable properties for applications in a variety of areas, including biomedicine and diagnostics. Among several conformational architectures, gold nanoshells provide a highly advantageous combination of properties that can be fine-tuned in designing single or multi-purpose nanomaterials, especially for applications in biology. One of the important parameters for evaluating the efficacy of gold nano-architectures is their reproducible synthesis and surface functionalization with desired moieties.
View Article and Find Full Text PDFBackground Macrophage cholesterol efflux to high-density lipoproteins ( HDLs ) is the first step of reverse cholesterol transport. The cholesterol efflux capacity ( CEC ) of HDL particles is a protective risk factor for coronary artery disease independent of HDL cholesterol levels. Using a genome-wide association study approach, we aimed to identify pathways that regulate CEC in humans.
View Article and Find Full Text PDFCurr Atheroscler Rep
September 2018
Purpose: The purpose of this review was to examine the role of IL-1β in the inflammatory process central to the development of atherosclerosis and to discuss current clinical evidence for treatments targeting IL-1β in coronary artery disease.
Recent Findings: IL-1β has been shown to modulate atherosclerotic plaque progression by upregulating the synthesis of adhesion molecules on endothelial cells, as well increasing activation and proliferation of vascular smooth muscle cells. Animal studies have further suggested that alterations in the balance between agonists and antagonists of IL-1β are important in promoting atherosclerosis.
Background And Aims: Lecithin:cholesterol acyltransferase (LCAT), a key enzyme in high-density lipoprotein (HDL) metabolism and reverse cholesterol transport (RCT), has been associated with atheroprotection. However, its relation to plaque characteristics has not been confirmed to date. We aimed to determine the relationship between plasma LCAT mass concentration and plaque burden in a multi-center imaging study.
View Article and Find Full Text PDFBackground: Pharmacogenomic studies have shown that ADCY9 genotype determines the effects of the CETP (cholesteryl ester transfer protein) inhibitor dalcetrapib on cardiovascular events and atherosclerosis imaging. The underlying mechanisms responsible for the interactions between ADCY9 and CETP activity have not yet been determined.
Methods: Adcy9-inactivated ( Adcy9) and wild-type (WT) mice, that were or not transgenic for the CETP gene (CETPtg Adcy9 and CETPtg Adcy9), were submitted to an atherogenic protocol (injection of an AAV8 [adeno-associated virus serotype 8] expressing a PCSK9 [proprotein convertase subtilisin/kexin type 9] gain-of-function variant and 0.
Can J Physiol Pharmacol
February 2018
The cellular mechanisms that induce calcific aortic stenosis are yet to be unraveled. Wnt signaling is increasingly being considered as a major player in the disease process. However, the presence of Wnt Frizzled (Fzd) receptors and co-receptors LRP5 and 6 in normal and diseased human aortic valves remains to be elucidated.
View Article and Find Full Text PDFInhibition of cholesteryl ester transfer protein (CETP) increases HDL cholesterol (HDL-C) levels. However, the circulating CETP level varies and the impact of its inhibition in species with high CETP levels on HDL structure and function remains poorly characterized. This study investigated the effects of dalcetrapib and anacetrapib, the two CETP inhibitors (CETPis) currently being tested in large clinical outcome trials, on HDL particle subclass distribution and cholesterol efflux capacity of serum in rabbits and monkeys.
View Article and Find Full Text PDFBackground And Aims: The potential benefits of high-density lipoproteins (HDL) against atherosclerosis are attributed to its major protein component, apolipoprotein A-I (apoA-I). Most of the apoA-I in the vascular wall appears to be in its lipid-poor form. The latter, however, is subjected to degradation by proteases localized in atherosclerotic plaques, which, in turn, has been shown to negatively impact its atheroprotective functions.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
March 2017
High-density lipoproteins are involved in reverse cholesterol transport and possess anti-inflammatory and antioxidative properties. Paradoxically, CETP (cholesteryl ester transfer protein) inhibitors have been shown to increase inflammation as revealed by a raised plasma level of high-sensitivity C-reactive protein. CETP inhibitors did not improve clinical outcomes in large-scale clinical trials of unselected patients with coronary disease.
View Article and Find Full Text PDFBackground: High-density lipoproteins (HDL) favorably affect endothelial progenitor cells (EPC). Circulating progenitor cell level and function are impaired in patients with acute coronary syndrome (ACS). This study investigates the short-term effects of reconstituted HDL (rHDL) on circulating progenitor cells in patients with ACS.
View Article and Find Full Text PDF