Publications by authors named "Eric Rehm"

There is a growing need for operational oceanographic predictions in both the Arctic and Antarctic polar regions. In the former, this is driven by a declining ice cover accompanied by an increase in maritime traffic and exploitation of marine resources. Oceanographic predictions in the Antarctic are also important, both to support Antarctic operations and also to help elucidate processes governing sea ice and ice shelf stability.

View Article and Find Full Text PDF

Fixation of organic carbon by phytoplankton is the foundation of nearly all open-ocean ecosystems and a critical part of the global carbon cycle. But quantification and validation of ocean primary productivity at large scale remains a major challenge, due to limited coverage of ship-based measurements and the difficulty of validating diverse measurement techniques. Accurate primary productivity measurements from autonomous platforms would be highly desirable, due to much greater potential coverage.

View Article and Find Full Text PDF

An inverse algorithm is developed to retrieve hyperspectral absorption and backscattering coefficients from measurements of hyperspectral upwelling radiance and downwelling irradiance in vertically homogeneous waters. The forward model is the azimuthally averaged radiative transfer equation, efficiently solved by the EcoLight radiative transfer model, which includes the effects of inelastic scattering. Although this inversion problem is ill posed (the solution is ambiguous for retrieval of total scattering coefficients), unique and stable solutions can be found for absorption and backscattering coefficients.

View Article and Find Full Text PDF

We develop two algorithms for determining two inherent optical properties (IOPs) from radiometric measurements in vertically homogeneous waters. The first algorithm is for estimation of the ratio of the backscattering to absorption coefficients from measurements of only the vertically upward radiance and the downward planar irradiance at depths where the light field is in the asymptotic regime. The second algorithm enables estimation of the absorption coefficient from measurement of the diffuse attenuation coefficient in the asymptotic regime after use of the first algorithm.

View Article and Find Full Text PDF

Ocean acidification in response to rising atmospheric CO2 partial pressures is widely expected to reduce calcification by marine organisms. From the mid-Mesozoic, coccolithophores have been major calcium carbonate producers in the world's oceans, today accounting for about a third of the total marine CaCO3 production. Here, we present laboratory evidence that calcification and net primary production in the coccolithophore species Emiliania huxleyi are significantly increased by high CO2 partial pressures.

View Article and Find Full Text PDF