Publications by authors named "Eric Randolph"

Since the first description of a set of characteristics of aging as so-called hallmarks or pillars in 2013/2014, these characteristics have served as guideposts for the research in aging biology. They have been examined in a range of contexts, across tissues, in response to disease conditions or environmental factors, and served as a benchmark for various anti-aging interventions. While the hallmarks of aging were intended to capture generalizable characteristics of aging, they are derived mostly from studies of rodents and humans.

View Article and Find Full Text PDF

The transcription factor CCAAT/enhancer binding protein () is expressed as an immediate early gene in the cAMP responsive element binding protein (CREB) mediated gene cascade, and it has essential functions in the synaptic consolidation of memory following a learning event. Synaptic consolidation primarily involves morphological changes at neuronal synapses, which are facilitated through the reorganization of the actin and microtubular cytoarchitecture of the cell. During early nervous system development, the transmembrane synaptic protein teneurin acts directly upon neuronal presynaptic microtubules and postsynaptic spectrin-based cytoskeletons to facilitate the creation of new synapses.

View Article and Find Full Text PDF

Anthropogenic activities introduce complex mixtures into aquatic environments, necessitating mixture toxicity evaluation during risk assessment. There are many alternative approaches that can be used to complement traditional techniques for mixture assessment. Our study aimed to demonstrate how these approaches could be employed for mixture evaluation in a target watershed.

View Article and Find Full Text PDF

To reduce the use of intact animals for chemical safety testing, while ensuring protection of ecosystems and human health, there is a demand for new approach methodologies (NAMs) that provide relevant scientific information at a quality equivalent to or better than traditional approaches. The present case study examined whether bioactivity and associated potency measured in an in vitro screening assay for aromatase inhibition could be used together with an adverse outcome pathway (AOP) and mechanistically based computational models to predict previously uncharacterized in vivo effects. Model simulations were used to inform designs of 60-h and 10-21-day in vivo exposures of adult fathead minnows (Pimephales promelas) to three or four test concentrations of the in vitro aromatase inhibitor imazalil ranging from 0.

View Article and Find Full Text PDF

Contaminants of Emerging Concern (CECs) can be measured in waters across the United States, including the tributaries of the Great Lakes. The extent to which these contaminants affect gene expression in aquatic wildlife is unclear. This dataset presents the full hepatic transcriptomes of laboratory-reared fathead minnows (Pimephales promelas) caged at multiple sites within the Milwaukee Estuary Area of Concern and control sites.

View Article and Find Full Text PDF

The present study evaluated whether in vitro measures of aromatase inhibition as inputs into a quantitative adverse outcome pathway (qAOP) construct could effectively predict in vivo effects on 17β-estradiol (E2) and vitellogenin (VTG) concentrations in female fathead minnows. Five chemicals identified as aromatase inhibitors in mammalian-based ToxCast assays were screened for their ability to inhibit fathead minnow aromatase in vitro. Female fathead minnows were then exposed to 3 of those chemicals: letrozole, epoxiconazole, and imazalil in concentration-response (5 concentrations plus control) for 24 h.

View Article and Find Full Text PDF

Predictive approaches to assessing the toxicity of contaminant mixtures have been largely limited to chemicals that exert effects through the same biological molecular initiating event. However, by understanding specific pathways through which chemicals exert effects, it may be possible to identify shared "downstream" nodes as the basis for forecasting interactive effects of chemicals with different molecular initiating events. Adverse outcome pathway (AOP) networks conceptually support this type of analysis.

View Article and Find Full Text PDF

There is significant concern regarding potential impairment of fish reproduction associated with endocrine disrupting chemicals. Aromatase (CYP19) is a steroidogenic enzyme involved in the conversion of androgens to estrogens. Inhibition of aromatase by chemicals can result in reduced concentrations of estrogens leading to adverse reproductive effects.

View Article and Find Full Text PDF

The hypothalamic-pituitary-thyroid (HPT) axis is known to play a crucial role in the development of teleost fish. However, knowledge of endogenous transcription profiles of thyroid-related genes in developing teleosts remains fragmented. We selected two model teleost species, the fathead minnow (Pimephales promelas) and the zebrafish (Danio rerio), to compare the gene transcription ontogeny of the HPT axis.

View Article and Find Full Text PDF

The Laurentian Great Lakes are a valuable natural resource that is affected by contaminants of emerging concern (CECs), including sex steroid hormones, personal care products, pharmaceuticals, industrial chemicals, and new generation pesticides. However, little is known about the fate and biological effects of CECs in tributaries to the Great Lakes. In the current study, 16 sites on three rivers in the Great Lakes basin (Fox, Cuyahoga, and Raquette Rivers) were assessed for CEC presence using polar organic chemical integrative samplers (POCIS) and grab water samplers.

View Article and Find Full Text PDF

Inflation of the posterior and/or anterior swim bladder is a process previously demonstrated to be regulated by thyroid hormones. We investigated whether inhibition of deiodinases, which convert thyroxine (T4) to the more biologically active form, 3,5,3'-triiodothyronine (T3), would impact swim bladder inflation. Two experiments were conducted using a model deiodinase inhibitor, iopanoic acid (IOP).

View Article and Find Full Text PDF

Studies worldwide have demonstrated the occurrence of feminized male fish at sites impacted by human and animal wastes. A variety of chemicals could contribute to this phenomenon, but those receiving the greatest attention in terms of research and monitoring have been 17β-estradiol (β-E2) and 17α-ethinylestradiol, due both to their prevalence in the environment and strong estrogenic potency. A third steroid, estrone (E1), also can occur at high concentrations in surface waters but generally has been of lesser concern due to its relatively lower affinity for vertebrate estrogen receptors.

View Article and Find Full Text PDF

In the present study, a hypothesized adverse outcome pathway linking inhibition of thyroid peroxidase (TPO) activity to impaired swim bladder inflation was investigated in two experiments in which fathead minnows (Pimephales promelas) were exposed to 2-mercaptobenzothiazole (MBT). Continuous exposure to 1mg MBT/L for up to 22 days had no effect on inflation of the posterior chamber of the swim bladder, which typically inflates around 6 days post fertilization (dpf), a period during which maternally-derived thyroid hormone is presumed to be present. In contrast, inflation of the anterior swim bladder, which occurs around 14dpf, was impacted.

View Article and Find Full Text PDF