Publications by authors named "Eric R Waclawik"

Artificial switchable catalysis is a new, rapidly expanding field that offers great potential advantages for both homogeneous and heterogeneous catalytic systems. Light irradiation is widely accepted as the best stimulus to artificial switchable chemical systems. In recent years, tremendous progress has been made in the synthesis and application of photo-switchable catalysts that can control when and where bond formation and dissociation take place in reactant molecules.

View Article and Find Full Text PDF

Photocatalysts can absorb light and activate molecular O under mild conditions, but the generation of unsuitable reactive oxygen species often limits their use in synthesizing fine chemicals. To address this issue, we disperse 1 wt% copper on tungsten trioxide (WO) support to create an efficient catalyst for selective oxidative coupling of aromatic amines to imines under sunlight irradiation at room temperature. Copper consists of a metallic copper core and an oxide shell.

View Article and Find Full Text PDF

5-hydroxymethylfurfural (HMF) is a valuable and essential platform chemical for establishing a sustainable, eco-friendly fine-chemical and pharmaceutical industry based on biomass. The cost-effective production of HMF from abundant C6 sugars requires mild reaction temperatures and efficient catalysts from naturally abundant materials. Herein, we report how fulvic acid forms complexes with Al ions that exhibit solar absorption and photocatalytic activity for glucose conversion to HMF in one-pot reaction, in good yield (~60%) and at moderate temperatures (80 °C).

View Article and Find Full Text PDF

Selective activation of the C(sp )-H bond is an important process in organic synthesis, where efficiently activating a specific C(sp )-H bond without causing side reactions remains one of chemistry's great challenges. Here we report that illuminated plasmonic silver metal nanoparticles (NPs) can abstract hydrogen from the C(sp )-H bond of the C atom of an alkyl aryl ether β-O-4 linkage. The intense electromagnetic near-field generated at the illuminated plasmonic NPs promotes chemisorption of the β-O-4 compound and the transfer of photo-generated hot electrons from the NPs to the adsorbed molecules leads to hydrogen abstraction and direct cleavage of the unreactive ether C -O bond under moderate reaction conditions (≈90 °C).

View Article and Find Full Text PDF

Surface-plasmon-mediated phenylacetylide intermediate transfer from the Cu to the Pd surface affords a novel mechanism for transmetalation, enabling wavelength-tunable cross-coupling and homo-coupling reaction pathway control. C-C bond forming Sonogashira coupling and Glaser coupling reactions in O atmosphere are efficiently driven by visible light over heterogeneous Cu and Pd nanoparticles as a mixed catalyst without base or other additives. The reaction pathway can be controlled by switching the excitation wavelength.

View Article and Find Full Text PDF

Direct photocatalytic CO reduction from primary sources, such as flue gas and air, into fuels, is highly desired, but the thermodynamically favored O reduction almost completely impedes this process. Herein, we report on the efficacy of a composite photocatalyst prepared by hyper-crosslinking porphyrin-based polymers on hollow TiO surface and subsequent coordinating with Pd(II). Such composite exhibits high resistance against O inhibition, leading to 12% conversion yield of CO from air after 2-h UV-visible light irradiation.

View Article and Find Full Text PDF

Selective oxidation of alcohols is an essential reaction for fine chemical production. Here, the photocatalytic oxidation of benzyl alcohol by zinc oxide (ZnO) nanocrystals was investigated to clarify the mechanism of selective oxidation with this process. Reactivity when in contact with three distinct ZnO nanocrystal shapes: nanocones, nanorods and nanoplates, was studied in order to compare crystal facet-specific effects in the reaction system.

View Article and Find Full Text PDF

Gold nanoparticles (Au NPs) supported on a nanostructured gamma alumina (γ-AlO) fiber can exhibit excellent catalytic activity for the conversion of 5-hydroxymethylfurfural to produce its ester derivative, dimethyl 2,5-furandicarboxylate (FDMC). γ-AlO was synthesized using a PEG surfactant to generate oxide fibers that randomly stack together into irregular shapes. The average particle sizes of the Au NPs are 1-6 nm, where the catalytically active Au (111) surface is the exposed facet.

View Article and Find Full Text PDF

We report a bioinspired emulsion microreactor composed of an electrical double layer to mimic the functions of cell membranes. This "artificial cell" can modulate the phase-oriented transport of reagents at the oil-liquid interface via the electrical double layer, affording a powerful tool to optimize the selectivity in a catalytic reaction.

View Article and Find Full Text PDF

Product selectivity of alkyne hydroamination over catalytic Au Co alloy nanoparticles (NPs) can be made switchable by a light-on/light-off process, yielding imine (cross-coupling product of aniline and alkyne) under visible-light irradiation, but 1,4-diphenylbutadiyne in the dark. The low-flux light irradiation concentrates aniline on the catalyst, accelerating the catalytic cross-coupling by several orders of magnitude even at a very low overall aniline concentrations (1.0×10  mol L ).

View Article and Find Full Text PDF

A facile one-pot two-stage photochemical synthesis of aromatic azoxy compounds and imines has been developed by coupling the selective reduction of nitroaromatic compounds with the selective oxidation of amines in an aqueous solution. In the first stage (light illumination, Ar atmosphere), the light excited nitroaromatic molecule abstract H from amine to form ArNOH and amine radical, which then form nitrosoaromatic, hydroxylamine and imine compounds. Water acts as a green solvent for the dispersion of the reactants and facilitates the formation of nitrosoaromatic and hydroxylamine intermediate compounds.

View Article and Find Full Text PDF

Direct hydrogenation of C=C double bonds is a basic transformation in organic chemistry which is vanishing from simple practice because of the need for pressurized hydrogen. Ammonia borane (AB) has emerged as a hydrogen source through its safety and high hydrogen content. However, in conventional systems the hydrogen liberated from the high-cost AB cannot be fully utilized.

View Article and Find Full Text PDF

Pickering emulsions are emulsions stabilized by solid particles located at surfaces/interfaces of liquid droplets that have promising applications for drug delivery and in nanomaterials synthesis. Direct observation of Pickering emulsions can be challenging. Normally, cryoelectron microscopy needs to be used to better understand these types of emulsion systems, but cryofreezing these emulsions may cause them to lose their original morphologies.

View Article and Find Full Text PDF

Metal-semiconductor hybrid nanomaterials are becoming increasingly popular for photocatalytic degradation of organic pollutants. Herein, a seed-assisted photodeposition approach is put forward for the site-specific growth of Pt on Au-ZnO particles (Pt-Au-ZnO). A similar approach was also utilized to enlarge the Au nanoparticles at epitaxial Au-ZnO particles (Au@Au-ZnO).

View Article and Find Full Text PDF

Construction of nanoarchitectures requires techniques like joint formation and trimming. For ceramic materials, however, it is extremely difficult to form nanojoints by conventional methods like merging. In this work, we demonstrate that ceramic titanate nanowires (NWs) can be joined by spot melting under electron beam (e-beam) irradiation (EBI).

View Article and Find Full Text PDF

A thorough analysis of the resonance light scattering (RLS) technique for quantitative scattering measurements of subwavelength nanoparticles is reported. The systematic error associated with using a measurement at a single angle to represent all of the scattered light is investigated. In-depth analysis of the reference material was performed to identify and minimize the error associated with the reference material.

View Article and Find Full Text PDF

This study investigated how to control the rate of photoreduction of metastable AuCl2(-) at the solid-solution interface of large ZnO nanoparticles (NPs) (50-100 nm size). Band-gap photoexcitation of electronic charge in ZnO by 370 nm UV light yielded Au NP deposition and the formation of ZnO-Au NP hybrids. Au NP growth was observed to be nonepitaxial, and the patterns of Au photodeposition onto ZnO NPs observed by high-resolution transmission electron microscopy were consistent with reduction of AuCl2(-) at ZnO facet edges and corner sites.

View Article and Find Full Text PDF

Reducing carbon dioxide to hydrocarbon fuel with solar energy is significant for high-density solar energy storage and carbon balance. In this work, single atoms of palladium and platinum supported on graphitic carbon nitride (g-C3N4), i.e.

View Article and Find Full Text PDF

A series of Pt(II) diimine complexes bearing benzothiazolylfluorenyl (BTZ-F8), diphenylaminofluorenyl (NPh2-F8), or naphthalimidylfluorenyl (NI-F8) motifs on the bipyridyl or acetylide ligands (Pt-4-Pt-8), (i.e., {4,4'-bis[7-R1-F8-(≡)n-]bpy}Pt(7-R2-F8- ≡ -)2, where F8 = 9,9'-di(2-ethylhexyl)fluorene, bpy = 2,2'-bipyridine, Pt-4: R1 = R2 = BTZ, n = 0; Pt-5: R1 = BTZ, R2 = NI, n = 0; Pt-6: R1 = R2 = BTZ, n = 1; Pt-7: R1 = BTZ, R2 = NPh2, n = 1; Pt-8: R1 = NPh2, R2 = BTZ, n = 1) were synthesized.

View Article and Find Full Text PDF

We report a new approach that uses the single beam Z-scan technique, to discriminate between excited state absorption (ESA) and two and three photon nonlinear absorption. By measuring the apparent delay or advance of the pulse in reaching the detector, the nonlinear absorption can be unambiguously identified as either instantaneous or transient. The simple method does not require a large range of input fluences or sophisticated pulse-probe experimental apparatus.

View Article and Find Full Text PDF

Dynamic light scattering (DLS) has become a primary nanoparticle characterization technique with applications from material characterization to biological and environmental detection. With the expansion in DLS use from homogeneous spheres to more complicated nanostructures comes a decrease in accuracy. Much research has been performed to develop different diffusion models that account for the vastly different structures, but little attention has been given to the effect on the light scattering properties in relation to DLS.

View Article and Find Full Text PDF

Complex three-dimensional structures comprised of porous ZnO plates were synthesized in a controlled fashion by hydrothermal methods. Through subtle changes to reaction conditions, the ZnO structures could be self-assembled from 20 nm thick nanosheets into grass-like and flower-like structures which led to the exposure of high proportions of ZnO {0001} crystal facets for both these materials. The measured surface area of the flower-like and the grass, or platelet-like ZnO samples were 72.

View Article and Find Full Text PDF

Surface coating with an organic self-assembled monolayer (SAM) can enhance surface reactions or the absorption of specific gases and hence improve the response of a metal oxide (MOx) sensor toward particular target gases in the environment. In this study the effect of an adsorbed organic layer on the dynamic response of zinc oxide nanowire gas sensors was investigated. The effect of ZnO surface functionalisation by two different organic molecules, tris(hydroxymethyl)aminomethane (THMA) and dodecanethiol (DT), was studied.

View Article and Find Full Text PDF

The self-assembling behavior and microscopic structure of zinc oxide nanoparticle Langmuir-Blodgett monolayer films were investigated for the case of zinc oxide nanoparticles coated with a hydrophobic layer of dodecanethiol. Evolution of nanoparticle film structure as a function of surface pressure (π) at the air-water interface was monitored in situ using Brewster's angle microscopy, where it was determined that π = 16 mN/m produced near-defect-free monolayer films. Transmission electron micrographs of drop-cast and Langmuir-Schaefer deposited films of the dodecanethiol-coated zinc oxide nanoparticles revealed that the nanoparticle preparation method yielded a microscopic structure that consisted of one-dimensional rodlike assemblies of nanoparticles with typical dimensions of 25 × 400 nm, encased in the organic dodecanethiol layer.

View Article and Find Full Text PDF

Sodium hexa-titanate (Na(2)Ti(6)O(13)) nanofibers, which have microporous tunnels, were prepared by heating sodium tri-titanate nanofibers with a layered structure at 573 K. The void section of the tunnels consist of eight linked TiO(6) octahedra, having a quasi-rectangular shape and the sodium ions located in these tunnel micropores are exchangeable. The exchange of these sodium ions with divalent cations, such as Sr(2+) and Ba(2+) ions, induces moderate structural deformation of the tunnels due to the stronger electrostatic interactions between di-valent ions Sr(2+) and Ba(2+) and the solid substrate.

View Article and Find Full Text PDF