A persistent lack of detailed and quantitative structural analysis of these hierarchical carbon nanotube (CNT) ensembles precludes establishing processing-structure-property relationships that are essential to enhance macroscale performance (e.g., in mechanical, electrical, thermal applications).
View Article and Find Full Text PDFCurrent approaches to carbon nanotube (CNT) synthesis are limited in their ability to control the placement of atoms on the surface of nanotubes. Some of this limitation stems from a lack of understanding of the chemical bond-building mechanisms at play in CNT growth. Here, we provide experimental evidence that supports an alkyne polymerization pathway in which short-chained alkynes directly incorporate into the CNT lattice during growth, partially retaining their side groups and influencing CNT morphology.
View Article and Find Full Text PDFIonic liquids possess compelling properties and vast chemical diversity, promising unprecedented performance and tunability for advanced electrochemical applications in catalysis, sensing, and energy storage. However, with broad tunability comes intractable, multidimensional parameter spaces not easily traversed by empirical approaches, limiting both scientific understanding and technological breakthroughs with these novel materials. In this Communication, we propose an extensible figure of merit that co-optimizes key ionic liquid properties, including electrochemical stability window, viscosity, and molecular ion size with respect to pore sizes of nanoporous electrodes typically utilized in electrochemical technologies.
View Article and Find Full Text PDFSimulations and experiments have revealed enormous transport rates through carbon nanotube (CNT) channels when a pressure gradient drives fluid flow, but comparatively little attention has been given to concentration-driven transport despite its importance in many fields. Here, membranes are fabricated with a known number of single-walled CNTs as fluid transport pathways to precisely quantify the diffusive flow through CNTs. Contrary to early experimental studies that assumed bulk or hindered diffusion, measurements in this work indicate that the permeability of small ions through single-walled CNT channels is more than an order of magnitude higher than through the bulk.
View Article and Find Full Text PDFEnhanced fluid transport in single-walled carbon nanotubes (SWCNTs) promises to enable major advancements in many membrane applications, from efficient water purification to next-generation protective garments. Practical realization of these advancements is hampered by the challenges of fabricating large-area, defect-free membranes containing a high density of open, small diameter SWCNT pores. Here, large-scale (≈60 cm) nanocomposite membranes comprising of an ultrahigh density (1.
View Article and Find Full Text PDFIonic liquids (ILs) promise far greater electrochemical performance compared to aqueous systems, yet key physicochemical properties governing their assembly at interfaces within commonly used graphitic nanopores remain poorly understood. In this work, we combine synchrotron X-ray scattering with first-principles molecular dynamics simulations to unravel key structural characteristics of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([TFSI]) ionic liquids confined in carbon slit pores. X-ray scattering reveals selective pore filling due to size exclusion, while filled pores exhibit disruption in the IL intermolecular structure, the extent of which increases for narrower slit pores.
View Article and Find Full Text PDFUnderstanding emergent phenomena of fluids under physical confinement requires the development of advanced tools for rapid and accurate simulation of their physiochemical properties. Simulating liquid molecules commensurate in size with the nanoscale enclosures that confine them is a key challenge. We demonstrate an accelerated molecular dynamics simulation technique that combines soft-core potentials (SCP) and simulated annealing (SA) to analyze confined liquids.
View Article and Find Full Text PDFAdvances in the synthesis and scalable manufacturing of single-walled carbon nanotubes (SWCNTs) remain critical to realizing many important commercial applications. Here we review recent breakthroughs in the synthesis of SWCNTs and highlight key ongoing research areas and challenges. A few key applications that capitalize on the properties of SWCNTs are also reviewed with respect to the recent synthesis breakthroughs and ways in which synthesis science can enable advances in these applications.
View Article and Find Full Text PDFFundamental understanding of structure-property relationships in hierarchically organized nanostructures is crucial for the development of new functionality, yet quantifying structure across multiple length scales is challenging. In this work, we used nondestructive X-ray scattering to quantitatively map the multiscale structure of hierarchically self-organized carbon nanotube (CNT) "forests" across 4 orders of magnitude in length scale, from 2.0 Å to 1.
View Article and Find Full Text PDFA lack of synthetic control and reproducibility during vertically aligned carbon nanotube (CNT) synthesis has stifled many promising applications of organic nanomaterials. Oxygen-containing species are particularly precarious in that they have both beneficial and deleterious effects and are notoriously difficult to control. Here, we demonstrated diatomic oxygen's ability, independent of water, to tune oxide-supported catalyst thin film dewetting and influence nanoscale (diameter and wall number) and macro-scale (alignment and density) properties for as-grown vertically aligned CNTs.
View Article and Find Full Text PDFThe properties of carbon nanotube (CNT) networks and analogous materials comprising filamentary nanostructures are governed by the intrinsic filament properties and their hierarchical organization and interconnection. As a result, direct knowledge of the collective dynamics of CNT synthesis and self-organization is essential to engineering improved CNT materials for applications such as membranes and thermal interfaces. Here, we use real-time environmental transmission electron microscopy (E-TEM) to observe nucleation and self-organization of CNTs into vertically aligned forests.
View Article and Find Full Text PDFA flexible membrane with sub-5 nm single-walled carbon nanotube (SWNT) pores is developed by F. Fornasiero and co-workers, as described on page 5871, for application as a key component of protective, yet breathable fabrics. The SWNTs are shown to enable exceptionally fast transport of water vapor under a concentration driving force.
View Article and Find Full Text PDFSmall-diameter carbon nanotubes (CNTs) are shown to enable exceptionally fast transport of water vapor under a concentration gradient driving force. Thanks to this property, membranes having sub-5 nm CNTs as conductive pores feature outstanding breathability while maintaining a high degree of protection from biothreats by size exclusion.
View Article and Find Full Text PDFOwing to their simple chemistry and structure, controllable geometry, and a plethora of unusual yet exciting transport properties, carbon nanotubes (CNTs) have emerged as exceptional channels for fundamental nanofluidic studies, as well as building blocks for future fluidic devices that can outperform current technology in many applications. Leveraging the unique fluidic properties of CNTs in advanced systems requires a full understanding of their physical origin. Recent advancements in nanofabrication technology enable nanofluidic devices to be built with a single, nanometer-wide CNT as a fluidic pathway.
View Article and Find Full Text PDFArrays of small-diameter nanoparticles with high spatial order are useful for chemical and biological sensors, data storage, synthesis of nanowires and nanotubes, and many other applications. We show that self-ordered metal nanoparticle arrays can be formed by dewetting of thin films on hexagonal mesh substrates made of anodic aluminum oxide (AAO). Upon heating, the metal (Fe) film dewets onto the interstitial sites (i.
View Article and Find Full Text PDFObjective: Carbon nanotubes (CNTs) are attractive for use in peripheral nerve interfaces because of their unique combination of strength, flexibility, electrical conductivity and nanoscale surface texture. Here we investigated the growth of motor neurons on thin films of horizontally aligned CNTs (HACNTs).
Approach: We cultured primary embryonic rat motor neurons on HACNTs and performed statistical analysis of the length and orientation of neurites.
We present the fabrication and mechanical properties of thin collagen networks self-assembled in a suspended configuration over micropost arrays. These collagen "canopies" were formed on arrays of microposts made of PDMS, silicon, and vertically aligned carbon nanotubes (CNT). We reversibly loaded the canopy to an in-plane stress of 32 MPa.
View Article and Find Full Text PDFWhile many promising applications have been demonstrated for vertically aligned carbon nanotube (CNT) forests, lack of consistency in results (e.g., CNT quality, height, and density) continues to hinder knowledge transfer and commercialization.
View Article and Find Full Text PDFThe production of high-performance carbon nanotube (CNT) materials demands understanding of the growth behavior of individual CNTs as well as collective effects among CNTs. We demonstrate the first use of grazing incidence small-angle X-ray scattering to monitor in real time the synthesis of CNT films by chemical vapor deposition. We use a custom-built cold-wall reactor along with a high-speed pixel array detector resulting in a time resolution of 10 msec.
View Article and Find Full Text PDFUnderstanding the population growth behavior of filamentary nanostructures, such as carbon nanotubes (CNTs), is hampered by the lack of characterization techniques capable of probing statistical variations with high spatial resolution. We present a comprehensive methodology for studying the population growth dynamics of vertically aligned CNT forests, utilizing high-resolution spatial mapping of synchrotron X-ray scattering and attenuation, along with real-time height kinetics. We map the CNT alignment and dimensions within CNT forests, revealing broadening and focusing of size distributions during different stages of the process.
View Article and Find Full Text PDFThermal treatments of feedstock gases (e.g., C(2)H(4)/H(2)) used during carbon nanotube (CNT) synthesis result in the formation of a complex mixture of volatile organic compounds and polycyclic aromatic hydrocarbons.
View Article and Find Full Text PDFOwing to their inherent tortuosity, the collective height of vertically aligned nanostructures does not equal the average length of the individual constituent nanostructures, and therefore temporal height measurement is not an accurate measure of the genuine growth kinetics. We use high-resolution spatial mapping of alignment by small-angle X-ray scattering (SAXS) to transform real-time measurements of array height to the average length of the nanostructures. Applying this approach to carbon nanotube (CNT) forest growth transforms the kinetics from a sub-linear to a linear relationship with time, highlighting the potential for insights into the limiting growth mechanisms of CNTs and other one-dimensional nanostructures.
View Article and Find Full Text PDFWe study synthesis of vertically aligned carbon nanotube (CNT) "forests" by a decoupled method that facilitates control of the mean diameter and structural quality of the CNTs and enables tuning of the kinetics for efficient growth to forest heights of several millimeters. The growth substrate temperature (T(s)) primarily determines the CNT diameter, whereas independent and rapid thermal treatment (T(p)) of the C(2)H(4)/H(2) reactant mixture significantly changes the growth rate and terminal forest height but does not change the CNT diameter. Synchrotron X-ray scattering is utilized for precise, nondestructive measurement of CNT diameter in large numbers of samples.
View Article and Find Full Text PDF