Publications by authors named "Eric R Lechman"

Article Synopsis
  • Acute myeloid leukemia (AML) is a complex and aggressive cancer with poor outcomes and few effective targeted treatments; KDM6 proteins play a key role in its development by regulating genes linked to DNA damage repair.
  • Research shows that KDM6A and KDM6B are essential for activating these repair mechanisms, and mutations in KDM6A can lead to chemotherapy resistance, though some relapsed AML cases show increased levels of KDM6A.
  • The study suggests that combining inhibitors targeting KDM6A with PARP and BCL2 can enhance cancer cell death, making it a promising new treatment approach for AML, highlighting the importance of KDM6A in predicting treatment response.
View Article and Find Full Text PDF

Gene expression profiling and proteome analysis of normal and malignant hematopoietic stem cells (HSCs) point to shared core stemness properties. However, discordance between mRNA and protein signatures highlights an important role for post-transcriptional regulation by microRNAs (miRNAs) in governing this critical nexus. Here, we identify miR-130a as a regulator of HSC self-renewal and differentiation.

View Article and Find Full Text PDF

Current treatments for acute myeloid leukemia (AML) are often ineffective in eliminating leukemic stem cells (LSCs), which perpetuate the disease. Here, we performed a metabolic drug screen to identify LSC-specific vulnerabilities and found that nicotinamide phosphoribosyltransferase (NAMPT) inhibitors selectively killed LSCs, while sparing normal hematopoietic stem and progenitor cells. Treatment with KPT-9274, a NAMPT inhibitor, suppressed the conversion of saturated fatty acids to monounsaturated fatty acids, a reaction catalyzed by the stearoyl-CoA desaturase (SCD) enzyme, resulting in apoptosis of AML cells.

View Article and Find Full Text PDF

Children with Down syndrome have a 150-fold increased risk of developing myeloid leukemia, but the mechanism of predisposition is unclear. Because Down syndrome leukemogenesis initiates during fetal development, we characterized the cellular and developmental context of preleukemic initiation and leukemic progression using gene editing in human disomic and trisomic fetal hematopoietic cells and xenotransplantation. GATA binding protein 1 () mutations caused transient preleukemia when introduced into trisomy 21 long-term hematopoietic stem cells, where a subset of chromosome 21 microRNAs affected predisposition to preleukemia.

View Article and Find Full Text PDF

In the human hematopoietic system, rare self-renewing multipotent long-term hematopoietic stem cells (LT-HSCs) are responsible for the lifelong production of mature blood cells and are the rational target for clinical regenerative therapies. However, the heterogeneity in the hematopoietic stem cell compartment and variable outcomes of CRISPR/Cas9 editing make functional interrogation of rare LT-HSCs challenging. Here, we report high efficiency LT-HSC editing at single-cell resolution using electroporation of modified synthetic gRNAs and Cas9 protein.

View Article and Find Full Text PDF

Acute leukemia is a rapidly progressing blood cancer with low survival rates. Unfavorable prognosis is attributed to insufficiently characterized subpopulations of leukemia stem cells (LSC) that drive chemoresistance and leukemia relapse. Here we utilized a genetic reporter that assesses stemness to enrich and functionally characterize LSCs.

View Article and Find Full Text PDF

There is a growing body of evidence that the molecular properties of leukemia stem cells (LSCs) are associated with clinical outcomes in acute myeloid leukemia (AML), and LSCs have been linked to therapy failure and relapse. Thus, a better understanding of the molecular mechanisms that contribute to the persistence and regenerative potential of LSCs is expected to result in the development of more effective therapies. We therefore interrogated functionally validated data sets of LSC-specific genes together with their known protein interactors and selected 64 candidates for a competitive in vivo gain-of-function screen to identify genes that enhanced stemness in human cord blood hematopoietic stem and progenitor cells.

View Article and Find Full Text PDF

Acute leukemia is an aggressive blood malignancy with low survival rates. A high expression of stem-like programs in leukemias predicts poor prognosis and is assumed to act in an aberrant fashion in the phenotypically heterogeneous leukemia stem cell (LSC) population. A lack of suitable genome engineering tools that can isolate LSCs based on their stemness precludes their comprehensive examination and full characterization.

View Article and Find Full Text PDF

A deep proteomics analysis was conducted on a primary acute myeloid leukemia culture system to identify potential protein targets regulated by miR-126. Leukemia cells were transduced either with an empty control lentivirus or one containing the sequence for miR-126, and resulting cells were analyzed using ultra-high performance liquid chromatography (UHPLC) coupled with high resolution mass spectrometry. The mass spectrometry data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PRIDE: PXD001994.

View Article and Find Full Text PDF

Umbilical cord blood (CB) is a convenient and broadly used source of hematopoietic stem cells (HSCs) for allogeneic stem cell transplantation. However, limiting numbers of HSCs remain a major constraint for its clinical application. Although one feasible option would be to expand HSCs to improve therapeutic outcome, available protocols and the molecular mechanisms governing the self-renewal of HSCs are unclear.

View Article and Find Full Text PDF

MicroRNA (miRNA)-126 is a known regulator of hematopoietic stem cell quiescence. We engineered murine hematopoiesis to express miRNA-126 across all differentiation stages. Thirty percent of mice developed monoclonal B cell leukemia, which was prevented or regressed when a tetracycline-repressible miRNA-126 cassette was switched off.

View Article and Find Full Text PDF

To investigate miRNA function in human acute myeloid leukemia (AML) stem cells (LSC), we generated a prognostic LSC-associated miRNA signature derived from functionally validated subpopulations of AML samples. For one signature miRNA, miR-126, high bioactivity aggregated all in vivo patient sample LSC activity into a single sorted population, tightly coupling miR-126 expression to LSC function. Through functional studies, miR-126 was found to restrain cell cycle progression, prevent differentiation, and increase self-renewal of primary LSC in vivo.

View Article and Find Full Text PDF

The hematopoietic system sustains regeneration throughout life by balancing self-renewal and differentiation. To stay poised for mature blood production, hematopoietic stem cells (HSCs) maintain low-level expression of lineage-associated genes, a process termed lineage priming. Here, we modulated expression levels of Inhibitor of DNA binding (ID) proteins to ask whether lineage priming affects self-renewal of human HSCs.

View Article and Find Full Text PDF

Lifelong blood cell production is governed through the poorly understood integration of cell-intrinsic and -extrinsic control of hematopoietic stem cell (HSC) quiescence and activation. MicroRNAs (miRNAs) coordinately regulate multiple targets within signaling networks, making them attractive candidate HSC regulators. We report that miR-126, a miRNA expressed in HSC and early progenitors, plays a pivotal role in restraining cell-cycle progression of HSC in vitro and in vivo.

View Article and Find Full Text PDF

Xenograft studies indicate that some solid tumors and leukemias are organized as cellular hierarchies sustained by cancer stem cells (CSCs). Despite the promise of the CSC model, its relevance in humans remains uncertain. Here we show that acute myeloid leukemia (AML) follows a CSC model on the basis of sorting multiple populations from each of 16 primary human AML samples and identifying which contain leukemia stem cells (LSCs) using a sensitive xenograft assay.

View Article and Find Full Text PDF

The nonobese diabetic/severe combined immune deficiency (NOD-scid) xenotransplantation model is the "gold standard" for assaying human hematopoietic stem cell activity. Systematic advancements, such as depletion of natural killer cell activity with anti-CD122 antibody, direct intrafemoral injection, and deletion or truncation of IL2Rgamma, have improved human cell engraftment; however, questions remain whether these mouse models are equivalent or, if not, which model is superior for assaying hematopoietic stem cell activity. To address this, we compared overall engraftment and multilineage differentiation of near-limiting doses of lineage-depleted human umbilical cord blood cells by direct intrafemoral injection into NOD/Lt-scid, NOD/Shi-scid, NOD/Lt-scid/IL2Rgamma(null) (NSG), and NOD/Shi-scid/IL2Rgamma(null) mice.

View Article and Find Full Text PDF

The use of nonviral delivery systems results in transient gene expression, in part because of the low efficiency of DNA integration. Previously, vectors based on transposon systems such as Sleeping Beauty have been shown to be able to increase stable transfection efficiencies in cell culture and in animal models. Himar1, a reconstructed active transposon belonging to the Tc1/mariner superfamily, also has been used as a vector for stable gene delivery, but the rate of transposition after transfection is low.

View Article and Find Full Text PDF

IL-10 is a Th2 cytokine important for inhibiting cell-mediated immunity while promoting humoral responses. Human IL-10 (hIL-10) has anti-inflammatory, immunosuppressive as well as immunostimulatory characteristics, whereas viral IL-10 (vIL-10), a homologue of hIL-10 encoded by Epstein Barr virus (EBV), lacks several immunostimulatory functions. The immunostimulatory characteristic of hIL-10 has been attributed to a single amino acid, isoleucine at position 87, which in vIL-10 is alanine.

View Article and Find Full Text PDF

We previously have demonstrated the ability of primary murine bone marrow-derived DC (BM-DC), genetically modified by adenoviral infection to express FasL, to inhibit progression of established collagen-induced arthritis (CIA) following systemic delivery. Here we demonstrate that exosomes derived from genetically modified BM-DC expressing FasL are able to inhibit inflammation in a murine footpad model of delayed-type hypersensitivity (DTH). Local administration of exosomes derived from DC expressing FasL (Exo/FasL) as well as the parental DC/FasL resulted in a significant reduction in swelling in both the treated and the untreated distal paw.

View Article and Find Full Text PDF

We have demonstrated previously that local, adenoviral-mediated gene transfer of viral IL-10 to a single joint of rabbits and mice with experimental arthritis can suppress disease in both the treated and untreated contralateral joints. This contralateral effect is mediated in part by APCs able to traffic from the treated joint to lymph nodes as well as to untreated joints. Moreover, injection of dendritic cells (DC) genetically modified to express IL-4 or Fas ligand was able to reverse established murine arthritis.

View Article and Find Full Text PDF

Synovial hyperplasia, resulting in erosion of cartilage and bone, represents one of the major pathologies associated with rheumatoid arthritis. To develop an approach for efficient delivery of proteins or agents to synovium to induce targeted apoptosis of hyperplastic synovial tissue, we have screened an M13 peptide phage display library for synovial-specific transduction peptides. We identified a novel synovial-targeted transduction peptide, HAP-1, which is able to facilitate specific internalization of protein complexes into human and rabbit synovial cells in culture and rabbit synovial lining in vivo.

View Article and Find Full Text PDF

Intra-articular expression of antagonists of interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) in arthritic rabbit knee and mouse ankle joints by direct adenoviral-mediated intraarticular delivery results in amelioration of disease pathology in both the treated and contralateral untreated joints. Previous experiments suggest that direct adenoviral infection of resident antigen-presenting cells (APCs) and subsequent traveling of these cells to other sites of inflammation and lymph nodes might be responsible for this "contralateral effect." To determine whether genetic modification of APCs is required for the contralateral effect, we have used an ex vivo approach utilizing genetically modified fibroblasts to express IL-1 receptor antagonist protein (IL-1Ra) and soluble TNF-alpha receptor (sTNFR) locally in arthritic joints.

View Article and Find Full Text PDF