The reactive singlet state of oxygen (O) can decay to the triplet ground state nonradiatively in the presence of a solvent. There is a controversy about whether tunnelling is involved in this nonadiabatic spin-crossover process. Semiclassical instanton theory provides a reliable and practical computational method for elucidating the reaction mechanism and can account for nuclear quantum effects such as zero-point energy and multidimensional tunnelling.
View Article and Find Full Text PDFThermally activated chemical reactions are typically understood in terms of overcoming potential-energy barriers. However, standard rate theories break down in the presence of a conical intersection (CI) because these processes are inherently nonadiabatic, invalidating the Born-Oppenheimer approximation. Moreover, CIs give rise to intricate nuclear quantum effects such as tunnelling and the geometric phase, which are neglected by standard trajectory-based simulations and remain largely unexplored in complex molecular systems.
View Article and Find Full Text PDFThe selective partial oxidation of methane to methanol has been a major chemistry challenge over the past several decades. The reason for this is that the weaker C-H bond of the desired product (methanol) is readily activated by the same catalyst used to activate the stronger C-H bond of methane. Quantum chemical calculations reveal how hydrogen-bonding interactions with the catalyst as well as other electronic and geometric effects slow the unwanted methanol oxidation reaction.
View Article and Find Full Text PDFWe simulate two recent matrix-isolation experiments at cryogenic temperatures, in which a nitrene undergoes spin crossover from its triplet state to a singlet state via quantum tunnelling. We detail the failure of the commonly applied weak-coupling method (based on a linear approximation of the potentials) in describing these deep-tunnelling reactions. The more rigorous approach of semiclassical golden-rule instanton theory in conjunction with double-hybrid density-functional theory and multireference perturbation theory does, however, provide rate constants and kinetic isotope effects in good agreement with experiment.
View Article and Find Full Text PDFInstanton theory provides a semiclassical approximation for computing quantum tunnelling effects in complex molecular systems. It is typically applied to proton-transfer reactions for which the Born-Oppenheimer approximation is valid. However, many processes in physics, chemistry and biology, such as electron transfers, are non-adiabatic and are correctly described instead using Fermi's golden rule.
View Article and Find Full Text PDFJ Am Chem Soc
December 2021
The spin-crossover reaction of thiophosgene has drawn broad attention from both experimenters and theoreticians as a prime example of radiationless intramolecular decay via intersystem crossing. Despite multiple attempts over 20 years, theoretical predictions have typically been orders of magnitude in error relative to the experimentally measured triplet lifetime. We address the T → S transition by the first application of semiclassical golden-rule instanton theory in conjunction with on-the-fly electronic-structure calculations based on multireference perturbation theory.
View Article and Find Full Text PDFMarcus-Levich-Jortner (MLJ) theory is one of the most commonly used methods for including nuclear quantum effects in the calculation of electron-transfer rates and for interpreting experimental data. It divides the molecular problem into a subsystem treated quantum-mechanically by Fermi's golden rule and a solvent bath treated by classical Marcus theory. As an extension of this idea, we here present a "reduced" semiclassical instanton theory, which is a multiscale method for simulating quantum tunneling of the subsystem in molecular detail in the presence of a harmonic bath.
View Article and Find Full Text PDFFermi's golden rule defines the transition rate between weakly coupled states and can thus be used to describe a multitude of molecular processes including electron-transfer reactions and light-matter interaction. However, it can only be calculated if the wave functions of all internal states are known, which is typically not the case in molecular systems. Marcus theory provides a closed-form expression for the rate constant, which is a classical limit of the golden rule, and indicates the existence of a normal regime and an inverted regime.
View Article and Find Full Text PDFFlexible gallium nitride (GaN) thin films can enable future strainable and conformal devices for transmission of radio-frequency (RF) signals over large distances for more efficient wireless communication. For the first time, strainable high-frequency RF GaN devices are demonstrated, whose exceptional performance is enabled by epitaxial growth on 2D boron nitride for chemical-free transfer to a soft, flexible substrate. The AlGaN/GaN heterostructures transferred to flexible substrates are uniaxially strained up to 0.
View Article and Find Full Text PDFThe cardiovascular complications of obesity have prompted interest in dietary interventions to reduce weight, including low-carbohydrate diets that are generally high in protein and fat. However, little is known about the long-term effects of these diets on vascular health. We examined the cardiovascular effects of a low-carbohydrate, high-protein diet (LCHP) in the ApoE(-/-) mouse model of atherosclerosis and in a model of ischemia-induced neovascularization.
View Article and Find Full Text PDF