An accretion disk formed around a supermassive black hole after it disrupts a star is expected to be initially misaligned with respect to the equatorial plane of the black hole. This misalignment induces relativistic torques (the Lense-Thirring effect) on the disk, causing the disk to precess at early times, whereas at late times the disk aligns with the black hole and precession terminates. Here we report, using high-cadence X-ray monitoring observations of a tidal disruption event (TDE), the discovery of strong, quasi-periodic X-ray flux and temperature modulations.
View Article and Find Full Text PDFThe tidal forces close to massive black holes can rip apart stars that come too close to them. As the resulting stellar debris spirals toward the black hole, the debris heats up and emits x-rays. We report observations of a stable 131-second x-ray quasi-periodic oscillation from the tidal disruption event ASASSN-14li.
View Article and Find Full Text PDF