Publications by authors named "Eric Prieur"

Background: Humanity has become largely dependent on artemisinin derivatives for both the treatment and control of malaria, with few alternatives available. A Plasmodium falciparum phenotype with delayed parasite clearance during artemisinin-based combination therapy has established in Southeast Asia, and is emerging elsewhere. Therefore, we must know how fast, and by how much, artemisinin-resistance can strengthen.

View Article and Find Full Text PDF

The lack of preclinical models able to faithfully predict the immune responses which are later obtained in the clinic is a major hurdle for vaccines development as it increases markedly the delays and the costs required to perform clinical studies. We developed and evaluated the relevance to human immune responses of a novel humanized mouse model, humanized-spleen cells-NOD-SCID-gamma null (Hu-SPL-NSG), in which we grafted human spleen cells in immunodeficient NOD-SCID-IL-2rγnull (NSG) mice. We selected the malaria vaccine candidate, Liver Stage Antigen 3-Full Length, because we had previously observed a major discrepancy between preclinical and clinical results, and compared its immunogenicity with that of a shorter form of the molecule, LSA3-729.

View Article and Find Full Text PDF

Haiti and the Dominican Republic, which share the island of Hispaniola, are the last locations in the Caribbean where malaria still persists. Malaria is an important public health concern in Haiti with 17,094 reported cases in 2014. Further, on January 12, 2010, a record earthquake devastated densely populated areas in Haiti including many healthcare and laboratory facilities.

View Article and Find Full Text PDF

Background: MSP3 has been shown to induce protection against malaria in African children. The characterization of a family of Plasmodium falciparum merozoite surface protein 3 (MSP3) antigens sharing a similar structural organization, simultaneously expressed on the merozoite surface and targeted by a cross-reactive network of protective antibodies, is intriguing and offers new perspectives for the development of subunit vaccines against malaria.

Methods: Eight recombinant polyproteins containing carefully selected regions of this family covalently linked in different combinations were all efficiently produced in Escherichia coli.

View Article and Find Full Text PDF

We examined the safety, immunogenicity and efficacy of a prime-boost vaccination regime involving two poxvirus malaria subunit vaccines, FP9-PP and MVA-PP, expressing the same polyprotein consisting of six pre-erythrocytic antigens from Plasmodium falciparum. Following safety assessment of single doses, 15 volunteers received a heterologous prime-boost vaccination regime and underwent malaria sporozoite challenge. The vaccines were safe but interferon-γ ELISPOT responses were low compared to other poxvirus vectors, despite targeting multiple antigens.

View Article and Find Full Text PDF

Plasmodium falciparum merozoite surface protein (MSP3) is a main target of protective immunity against malaria that is currently undergoing vaccine development. It was shown recently to belong, together with MSP6, to a new multigene family whose C-terminal regions have a similar organization, contain both homologous and divergent regions, and are highly conserved across isolates. In an attempt to rationally design novel vaccine constructs, we extended the analysis of antigenicity and function of region-specific antibodies, previously performed with MSP3 and MSP6, to the remaining four proteins of the MSP3 family using four recombinant proteins and 24 synthetic peptides.

View Article and Find Full Text PDF

Background: A high level of genetic stability has been formerly identified in segments of the gene coding for the liver stage antigen-3 (LSA-3), a subunit vaccine candidate against Plasmodium falciparum. The exploration of lsa-3 polymorphisms was extended to the whole sequence of this large antigen in 20 clinical isolates from four geographical areas; Senegal, Comoro islands, Brazil and Thailand.

Methods: The whole 4680 bp genomic sequence of lsa-3 was amplified by polymerase chain reaction and sequenced.

View Article and Find Full Text PDF

Plasmodium falciparum merozoite surface protein 3 (MSP3), the target of antibodies that mediate parasite killing in cooperation with blood monocytes and are associated with protection in exposed populations, is a vaccine candidate under development. It belongs to a family of six structurally related genes. To optimize immunogenicity, we attempted to improve its design based on knowledge of antigenicity of various regions from the conserved C terminus of the six proteins and an analysis of the immunogenicity of "tailored" constructs.

View Article and Find Full Text PDF

To generate broadly protective T cell responses more similar to those acquired after vaccination with radiation-attenuated Plasmodium falciparum sporozoites, we have constructed candidate subunit malaria vaccines expressing six preerythrocytic antigens linked together to produce a 3240-aa-long polyprotein (L3SEPTL). This polyprotein was expressed by a plasmid DNA vaccine vector (DNA) and by two attenuated poxvirus vectors, modified vaccinia virus Ankara (MVA) and fowlpox virus of the FP9 strain. MVAL3SEPTL boosted anti-thrombospondin-related adhesive protein (anti-TRAP) and anti-liver stage antigen 1 (anti-LSA1) CD8(+) T cell responses when primed by single antigen TRAP- or LSA1-expressing DNAs, respectively, but not by DNA-L3SEPTL.

View Article and Find Full Text PDF