Publications by authors named "Eric Olmon"

Damage to genomic DNA leads to mutagenesis and disease. Repair of single base damage is initiated by DNA glycosylases, the first enzymes in the base excision repair pathway. Although eukaryotic packaging of chromosomal DNA in nucleosomes is known to decrease DNA glycosylase efficiency, the impact on individual glycosylases is unclear.

View Article and Find Full Text PDF

A new family of ruthenium(II) complexes with sterically expansive ligands for targeting DNA defects was prepared, and their luminescent responses to base pair mismatches and/or abasic sites were investigated. Design of the complexes sought to combine the mismatch specificity of sterically expansive metalloinsertors, such as [Rh(bpy)2(chrysi)](3+) (chrysi = chrysene-5,6-quinone diimine), and the light switch behavior of [Ru(bpy)2(dppz)](2+) (dppz = dipyrido[3,2-a:2',3'-c]phenazine). In one approach, complexes bearing analogues of chrysi incorporating hydrogen-bonding functionality similar to dppz were synthesized.

View Article and Find Full Text PDF

The structural core of DNA, a continuous stack of aromatic heterocycles, the base pairs, which extends down the helical axis, gives rise to the fascinating electronic properties of this molecule that is so critical for life. Our laboratory and others have developed diverse experimental platforms to investigate the capacity of DNA to conduct charge, termed DNA-mediated charge transport (DNA CT). Here, we present an overview of DNA CT experiments in solution, on surfaces, and with single molecules that collectively provide a broad and consistent perspective on the essential characteristics of this chemistry.

View Article and Find Full Text PDF

Metallointercalating photooxidants interact intimately with the base stack of double-stranded DNA and exhibit rich photophysical and electrochemical properties, making them ideal probes for the study of DNA-mediated charge transport (CT). The complexes [Rh(phi)(2)(bpy')](3+) (phi = 9,10-phenanthrenequinone diimine; bpy' = 4-methyl-4'-(butyric acid)-2,2'-bipyridine), [Ir(ppy)(2)(dppz')](+) (ppy = 2-phenylpyridine; dppz' = 6-(dipyrido[3,2-a:2',3'-c]phenazin-11-yl)hex-5-ynoic acid), and [Re(CO)(3)(dppz)(py')](+) (dppz = dipyrido[2,3-a:2',3'-c]phenazine; py' = 3-(pyridin-4-yl)-propanoic acid) were each covalently tethered to DNA to compare their photooxidation efficiencies. Biochemical studies show that upon irradiation, the three complexes oxidize guanine by long-range DNA-mediated CT with the efficiency: Rh > Re > Ir.

View Article and Find Full Text PDF

The complex [Re(CO)(3)(dppz)(py'-OR)](+) (dppz = dipyrido[3,2-a:2',3'-c]phenazine; py'-OR = 4-functionalized pyridine) offers IR sensitivity and can oxidize DNA directly from the excited state, making it a promising probe for the study of DNA-mediated charge transport (CT). The behavior of several covalent and noncovalent Re-DNA constructs was monitored by time-resolved IR (TRIR) and UV/visible spectroscopies, as well as biochemical methods, confirming the long-range oxidation of DNA by the excited complex. Optical excitation of the complex leads to population of MLCT and at least two distinct intraligand states.

View Article and Find Full Text PDF

In all organisms, oxidation threatens the integrity of the genome. DNA-mediated charge transport (CT) may play an important role in the generation and repair of this oxidative damage. In studies involving long-range CT from intercalating Ru and Rh complexes to 5'-GG-3' sites, we have examined the efficiency of CT as a function of distance, temperature, and the electronic coupling of metal oxidants bound to the base stack.

View Article and Find Full Text PDF

The luminescent characteristics of Ru(bpy)(2)dppz(2+) (dppz = dipyrido[3,2-a:2',3'-c]phenazine), a DNA light switch, were investigated in the presence of oligonucleotides containing single base mismatches or an abasic site. In water, the ruthenium luminescence is quenched, but, bound to well matched duplex DNA, the Ru complex luminesces. Here we show that with DNAs containing a defect, rac-, Delta-, and Lambda-Ru(bpy)(2)dppz(2+) exhibit significant luminescent enhancements above that with well matched DNA.

View Article and Find Full Text PDF

It was recently shown that thymine dimers in the all-thymine oligonucleotide (dT)(18) are fully formed in <1 ps after ultraviolet excitation. The speed and low quantum yield of this reaction suggest that only a small fraction of the conformers of this structurally disordered oligonucleotide are in a position to react at the instant of photon absorption. In this work, we explore the hypothesis that conventional molecular dynamics simulations can be used to predict the yield of cyclobutane pyrimidine dimers in DNA.

View Article and Find Full Text PDF