This study illuminates the mineral carbonation potential of zeolite minerals. Zeolite minerals are common alteration products of basaltic rocks and are known for their ability to rapidly exchange their interstitial cations with those in aqueous solutions. A series of closed system batch reactor experiments was conducted at 60 °C by combining stilbite, a Ca-bearing zeolite, with 0.
View Article and Find Full Text PDFCarbon capture and storage projects need to be greatly accelerated to attenuate the rate and degree of global warming. Due to the large volume of carbon that will need to be stored, it is likely that the bulk of this storage will be in the subsurface via geologic storage. To be effective, subsurface carbon storage needs to limit the potential for CO leakage from the reservoir to a minimum.
View Article and Find Full Text PDFBasalts are recognized as one of the major habitats on Earth, harboring diverse and active microbial populations. Inconsistently, this living component is rarely considered in engineering operations carried out in these environments. This includes carbon capture and storage (CCS) technologies that seek to offset anthropogenic CO emissions into the atmosphere by burying this greenhouse gas in the subsurface.
View Article and Find Full Text PDFAnthropogenic water management has extensively altered the world's river systems through impoundments and channel diversions to meet the human's need for water, energy and transportation. To illuminate the effect of such activities on the environment, this study describes the impact of the installation of the Kárahnjúkar Dam in Eastern Iceland on the transport of riverine dissolved- and particulate material to the ocean by the Jökulsá á Dal and the Lagarfljót rivers. This dam, completed in 2007, collects water into the 2.
View Article and Find Full Text PDFCarbon capture and storage (CCS) provides a solution toward decarbonization of the global economy. The success of this solution depends on the ability to safely and permanently store CO2 This study demonstrates for the first time the permanent disposal of CO2 as environmentally benign carbonate minerals in basaltic rocks. We find that over 95% of the CO2 injected into the CarbFix site in Iceland was mineralized to carbonate minerals in less than 2 years.
View Article and Find Full Text PDFThere is a critical need to better define the relationship among particle size, surface area, and dissolution rate for nanoscale materials to determine their role in the environment, their toxicity, and their technological utility. Although some previous studies concluded that nanoparticles dissolve faster than their bulk analogs, contradictory evidence suggests that nanoparticles dissolve more slowly. Furthermore, insufficient characterization of the nanoparticulate samples and the solution chemistry in past studies obscures the relationship between particle size, surface area, and dissolution rate.
View Article and Find Full Text PDFJ Colloid Interface Sci
July 2008
Zeta potential and acid-base titrations of active, inactivated, and dead Planktothrix sp. and Synechococcus sp. cyanobacteria were performed to determine the degree to which cell surface electric potential and proton/hydroxyl adsorption are controlled by metabolism or cell membrane structure.
View Article and Find Full Text PDFThermodynamic calculations indicate that although dawsonite (NaAlCO3(OH)2) is favored to form at the high CO2 pressures associated with carbon dioxide injection into sandstone reservoirs, this mineral will become unstable as CO2 pressure decreases following injection. To assess the degree to which dawsonite will persist following its formation in sandstone reservoirs, its dissolution rates have been measured at 80 +/- 3 degrees C as a function of pH from 3 to 10. Measured dawsonite dissolution rates normalized to their BET surface area are found to be nearly independent of pH over the range of 3.
View Article and Find Full Text PDF