The tumour suppressor p16/CDKN2A and the metabolic gene, methyl-thio-adenosine phosphorylase (MTAP), are frequently co-deleted in some of the most aggressive and currently untreatable cancers. Cells with MTAP deletion are vulnerable to inhibition of the metabolic enzyme, methionine-adenosyl transferase 2A (MAT2A), and the protein arginine methyl transferase (PRMT5). This synthetic lethality has paved the way for the rapid development of drugs targeting the MAT2A/PRMT5 axis.
View Article and Find Full Text PDFDespite progress, MS-based proteomics in biofluids, especially blood, faces challenges such as dynamic range and throughput limitations in biomarker and disease studies. In this work, we used cutting-edge proteomics technologies to construct label-based and label-free workflows, capable of quantifying approximately 2,000 proteins in biofluids. With 70µL of blood and a single depletion strategy, we conducted an analysis of a homogenous cohort (n = 32), comparing medium-grade prostate cancer patients (Gleason score: 7(3 + 4); TNM stage: T2cN0M0, stage IIB) to healthy donors.
View Article and Find Full Text PDFFor targeted protein panels, the ability to specifically assay post-translational modifications (PTMs) in a quantitative, sensitive, and straightforward manner would substantially advance biological and pharmacological studies. The present study highlights the effectiveness of the Affi-BAMS™ epitope-directed affinity bead capture/MALDI MS platform for quantitatively defining complex PTM marks of H3 and H4 histones. Using H3 and H4 histone peptides and isotopically labelled derivatives, this affinity bead and MALDI MS platform achieves a range of >3 orders of magnitude with a technical precision CV of <5%.
View Article and Find Full Text PDFEnhancing the removal of aggregate-prone toxic proteins is a rational therapeutic strategy for a number of neurodegenerative diseases, especially Huntington's disease and various spinocerebellar ataxias. Ideally, such approaches should preferentially clear the mutant/misfolded species, while having minimal impact on the stability of wild-type/normally-folded proteins. Furthermore, activation of both ubiquitin-proteasome and autophagy-lysosome routes may be advantageous, as this would allow effective clearance of both monomeric and oligomeric species, the latter which are inaccessible to the proteasome.
View Article and Find Full Text PDFCyclin-dependent-kinases (CDKs) are members of the serine/threonine kinase family and are highly regulated by cyclins, a family of regulatory subunits that bind to CDKs. CDK9 represents one of the most studied examples of these transcriptional CDKs. CDK9 forms a heterodimeric complex with its regulatory subunit cyclins T1, T2 and K to form the positive transcription elongation factor b (P-TEFb).
View Article and Find Full Text PDF1. Negamycin exerts its antimicrobial activity by inhibiting bacterial protein synthesis and is efficacious in animal models of infection. In order to optimize negamycin exposure for therapeutic purposes, its pharmacokinetics in pre-clinical species were determined.
View Article and Find Full Text PDF