Microrefugia, defined as small areas maintaining populations of species outside their range margins during environmental extremes, are increasingly recognized for their role in conserving species in the face of climate change. Understanding their microclimatic dynamics becomes crucial with global warming leading to severe temperature and precipitation changes. This study investigates the phenomenon of short-term climatic decoupling within microrefugia and its implications for plant persistence in the Mediterranean region of southeastern France.
View Article and Find Full Text PDFUrban streams display consistent ecological symptoms that commonly express degraded biological, physical, and chemical conditions: the urban stream syndrome (USS). Changes linked to the USS result in consistent declines in the abundance and richness of algae, invertebrates, and riparian vegetation. In this paper, we assessed the impacts of extreme ionic pollution from an industrial effluent in an urban stream.
View Article and Find Full Text PDFIn the context of global warming, a clear understanding of microrefugia-microsites enabling the survival of species populations outside their main range limits-is crucial. Several studies have identified forcing factors that are thought to favor the existence of microrefugia. However, there is a lack of evidence to conclude whether, and to what extent, the climate encountered within existing microrefugia differs from the surrounding climate.
View Article and Find Full Text PDFPlant removal experiments allow assessment of the role of biotic interactions among species or functional groups in community assembly and ecosystem functioning. When replicated along climate gradients, they can assess changes in interactions among species or functional groups with climate. Across twelve sites in the Vestland Climate Grid (VCG) spanning 4 °C in growing season temperature and 2000 mm in mean annual precipitation across boreal and alpine regions of Western Norway, we conducted a fully factorial plant functional group removal experiment (graminoids, forbs, bryophytes).
View Article and Find Full Text PDFSeedling recruitment is a bottleneck for population dynamics and range shift. The vital rates linked to recruitment by seed are impacted by amplified drought induced by climate change. In the Mediterranean region, autumn and winter seedling emergence and mortality may have strong impact on the overall seedling recruitment.
View Article and Find Full Text PDFSeed dispersal and local filtering interactively govern community membership and scale up to shape regional vegetation patterns, but data revealing how and why particular species are excluded from specific communities in nature are scarce. This lack of data is a missing link between our theoretical understanding of how diversity patterns can form and how they actually form in nature, and it hampers our ability to predict community responses to climate change. Here, we compare seed, seedling, and adult plant communities at 12 grassland sites with different climates in southern Norway to examine how community membership is interactively shaped by seed dispersal and local filtering, and how this process varies with climate across sites.
View Article and Find Full Text PDFClimate warming is likely to shift the range margins of species poleward, but fine-scale temperature differences near the ground (microclimates) may modify these range shifts. For example, cold-adapted species may survive in microrefugia when the climate gets warmer. However, it is still largely unknown to what extent cold microclimates govern the local persistence of populations at their warm range margin.
View Article and Find Full Text PDFIn climate change ecology, simplistic research approaches may yield unrealistically simplistic answers to often more complicated problems. In particular, the complexity of vegetation responses to global climate change begs a better understanding of the impacts of concomitant changes in several climatic drivers, how these impacts vary across different climatic contexts, and of the demographic processes underlying population changes. Using a replicated, factorial, whole-community transplant experiment, we investigated regional variation in demographic responses of plant populations to increased temperature and/or precipitation.
View Article and Find Full Text PDFMicrorefugia are sites that support populations of species when their ranges contract during unfavorable climate episodes. Here, we review and discuss two aspects relevant for microrefugia. First, distributions of different species are influenced by different climatic variables.
View Article and Find Full Text PDFOnly a few studies have shown positive impacts of ecological compensation on species dynamics affected by human activities. We argue that this is due to inappropriate methods used to forecast required compensation in environmental impact assessments. These assessments are mostly descriptive and only valid at limited spatial and temporal scales.
View Article and Find Full Text PDFThe inclusion of environmental variation in studies of recruitment is a prerequisite for realistic predictions of the responses of vegetation to a changing environment. We investigated how seedling recruitment is affected by seed availability and microsite quality along a steep environmental gradient in dry tundra. A survey of natural seed rain and seedling density in vegetation was combined with observations of the establishment of 14 species after sowing into intact or disturbed vegetation.
View Article and Find Full Text PDF