Effective treatment of orthopedic implant-associated infections (IAIs) remains a clinical challenge. The in vitro and in vivo studies presented herein evaluated the antimicrobial effects of applying cathodic voltage-controlled electrical stimulation (CVCES) to titanium implants inoculated with preformed bacterial biofilms of methicillin-resistant Staphylococcus aureus (MRSA). The in vitro studies showed that combining vancomycin therapy (500 µg/mL) with application of CVCES at -1.
View Article and Find Full Text PDFVirtual reality (VR)-based motor therapy is an emerging approach in neurorehabilitation. The combination of VR with electroencephalography (EEG) presents further opportunities to improve therapeutic efficacy by personalizing the paradigm. Specifically, the idea is to synchronize the choice and timing of stimuli in the perceived virtual world with fluctuating brain states relevant to motor behavior.
View Article and Find Full Text PDFEEG-based brain-computer interfaces (BCI) have promising therapeutic potential beyond traditional neurofeedback training, such as enabling personalized and optimized virtual reality (VR) neurorehabilitation paradigms where the timing and parameters of the visual experience is synchronized with specific brain states. While BCI algorithms are often designed to focus on whichever portion of a signal is most informative, in these brain-state-synchronized applications, it is of critical importance that the resulting decoder is sensitive to physiological brain activity representative of various mental states, and not to artifacts, such as those arising from naturalistic movements. In this study, we compare the relative classification accuracy with which different motor tasks can be decoded from both extracted brain activity and artifacts contained in the EEG signal.
View Article and Find Full Text PDFOsseointegrated (OI) prosthetic limbs have been shown to provide an advantageous treatment option for amputees. In order for the OI prosthesis to be successful, the titanium implant must rapidly achieve and maintain proper integration with the bone tissue and remain free of infection. Electrochemical methods can be utilized to control and/or monitor the interfacial microenvironment where the titanium implant interacts with the biological system (host bone tissue or bacteria).
View Article and Find Full Text PDFBackground: Repetitive transcranial magnetic stimulation (rTMS) of the left dorsolateral prefrontal cortex (DLPFC) is an effective treatment for major depressive disorder (MDD), but response rates are low and effect sizes small. Synchronizing TMS pulses with instantaneous brain oscillations can reduce variability and increase efficacy of TMS-induced plasticity.
Objective: To study whether brain oscillation-synchronized rTMS is feasible, safe and has neuromodulatory effects when targeting the DLPFC of patients with MDD.
We evaluated the ability of a virtual reality (VR) system to reliably detect the reaching frequency midline position of a user; the distinguishing plane between free-choice use of the left and right hand. The paradigm utilized the Leap Motion Hand Tracker along with a custom script written in C# and was realized through a Unity3D application. Stimuli appeared in random locations on the computer screen and required the participant to reach with the hand of their choice to contact them with a virtually coupled hand inside the virtual space.
View Article and Find Full Text PDF