Magnesium-doped hydroxyapatite (HAp-Mg) nanofibers show promise for medical applications due to their structural similarity to bone minerals and enhanced biological properties, such as improved biocompatibility and antimicrobial activity. This study synthesized HAp-Mg nanofibers using a microwave-assisted hydrothermal method (MAHM) to evaluate their cytotoxicity, biocompatibility, and antimicrobial efficacy compared to commercial hydroxyapatite (HAp). Characterization through X-ray diffraction (XRD), scanning electron microscopy (SEM), Transmission Electron Microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR) confirmed the successful incorporation of magnesium, producing high-purity, crystalline nanofibers with hexagonal morphology.
View Article and Find Full Text PDFMaterials (Basel)
July 2022
In this work, novel adsorbents based on 3D hierarchical silica monoliths functionalized with thiol groups were used for the removal of Hg(II) ions from an acidic aqueous solution (pH 3.5). Silica monoliths were synthesized by using two different pluronic triblock polymers (P123 and F127) to study the effect of porous structure on their sorption capacity.
View Article and Find Full Text PDF