Electrification and clean hydrogen are promising low-carbon options for decarbonizing industrial process heat, which is an essential target for reducing sector-wide emissions. However, industrial processes with heat demand vary significantly across industries in terms of temperature requirements, capacities, and equipment, making it challenging to determine applications for low-carbon technologies that are technically and economically feasible. In this analysis, we develop a framework for evaluating life cycle emissions, water use, and cost impacts of electric and clean hydrogen process heat technologies and apply it in several case studies for plastics and petrochemical manufacturing industries in the United States.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2023
Silicon carbide and gallium nitride, two leading wide band gap semiconductors with significant potential in electric vehicle power electronics, are examined from a life cycle energy perspective and compared with incumbent silicon in U.S. light-duty electric vehicle fleet.
View Article and Find Full Text PDFProduct energy intensity (PEI) metrics allow industry and policymakers to quantify manufacturing energy requirements on a product-output basis. However, complexities can arise for benchmarking of thermally concentrated products, particularly in the food processing industry, due to differences in outlet composition, feed material composition, and processing technology. This study analyzes tomato paste as a typical, high-volume concentrated product using a thermodynamics-based model.
View Article and Find Full Text PDFThis paper presents estimates for water consumption and steam generation within U.S. manufacturing industries.
View Article and Find Full Text PDF