Publications by authors named "Eric Marksz"

Frequency-dependent linear-permittivity measurements are commonplace in the literature, providing key insights into the structure of dielectric materials. These measurements describe a material's dynamic response to a small applied electric field. However, nonlinear dielectric materials are widely used for their responses to large applied fields, including switching in ferroelectric materials, and field tuning of the permittivity in paraelectric materials.

View Article and Find Full Text PDF

Epitaxial strain can unlock enhanced properties in oxide materials, but restricts substrate choice and maximum film thickness, above which lattice relaxation and property degradation occur. Here we employ a chemical alternative to epitaxial strain by providing targeted chemical pressure, distinct from random doping, to induce a ferroelectric instability with the strategic introduction of barium into today's best millimetre-wave tuneable dielectric, the epitaxially strained 50-nm-thick n = 6 (SrTiO)SrO Ruddlesden-Popper dielectric grown on (110) DyScO. The defect mitigating nature of (SrTiO)SrO results in unprecedented low loss at frequencies up to 125 GHz.

View Article and Find Full Text PDF

Carbon nanotube composites are lightweight, multifunctional materials with readily adjustable mechanical and electrical properties-relevant to the aerospace, automotive, and sporting goods industries as high-performance structural materials. Here, we combine well-established and newly developed characterization techniques to demonstrate that ultraviolet (UV) light exposure provides a controllable means to enhance the electrical conductivity of the surface of a commercial carbon nanotube-epoxy composite by over 5 orders of magnitude. Our observations, combined with theory and simulations, reveal that the increase in conductivity is due to the formation of a concentrated layer of nanotubes on the composite surface.

View Article and Find Full Text PDF