Spinal muscular atrophy (SMA) is a neuromuscular disease caused by a deficiency of survival motor neuron (SMN) due to mutations in the SMN1 gene. In this study, an adeno-associated virus (AAV) vector expressing human SMN (AAV8-hSMN) was injected at birth into the CNS of mice modeling SMA. Western blot analysis showed that these injections resulted in widespread expression of SMN throughout the spinal cord, and this translated into robust improvement in skeletal muscle physiology, including increased myofiber size and improved neuromuscular junction architecture.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of the motor system. Recent work in rodent models of ALS has shown that insulin-like growth factor-1 (IGF-1) slows disease progression when delivered at disease onset. However, IGF-1's mechanism of action along the neuromuscular axis remains unclear.
View Article and Find Full Text PDFClassical late infantile neuronal ceroid lipofuscinosis (cLINCL) is a monogenic disorder caused by the loss of tripeptidyl peptidase 1 (TPP1) activity as a result of mutations in CLN2. Absence of TPP1 results in lysosomal storage with an accompanying axonal degeneration throughout the central nervous system (CNS), which leads to progressive neurodegeneration and early death. In this study, we compared the efficacies of pre- and post-symptomatic injections of recombinant adeno-associated virus (AAV) for treating the cellular and functional abnormalities of CLN2 mutant mice.
View Article and Find Full Text PDFGlial cell line-derived neurotrophic factor (GDNF) is produced by skeletal muscle and affects peripheral motor neurons. Elevated expression of GDNF in skeletal muscle leads to hyperinnervation of neuromuscular junctions, whereas postnatal administration of GDNF causes synaptic remodeling at the neuromuscular junction. Studies have demonstrated that altered physical activity causes changes in the neuromuscular junction.
View Article and Find Full Text PDF