Publications by authors named "Eric M Pridgen"

"Cup-shaped power reamers" and "flat cuts" (FC) are common joint preparation techniques in first metatarsophalangeal (MTP) joint arthrodesis. However, the third option of an "in situ" (IS) technique has rarely been studied. This study aims to compare the clinical, radiographic, and patient-reported outcomes (PROMs) of the IS technique for various MTP pathologies with other MTP joint preparation techniques.

View Article and Find Full Text PDF

Background: The most common indications for revision of first metatarsophalangeal joint (MTPJ) arthrodesis are symptomatic failures of prior arthrodesis, failed hallux valgus correction, and failed MTPJ arthroplasty implants. However, the outcomes of revision MTPJ arthrodesis have rarely been studied. The purpose of this study was to compare the clinical, radiographic, and patient-reported outcomes of revision MTPJ arthrodesis following different primary procedures.

View Article and Find Full Text PDF

Purpose: Bone tumors are common in the distal femur and often treated with intralesional curettage. The optimal method of stabilization of large distal femoral defects after curettage remains unclear. The goal of this study is to compare stabilization techniques for large distal femoral defects.

View Article and Find Full Text PDF

Periprosthetic joint infection (PJI) is a common complication after total joint arthroplasty leading to severe morbidity and mortality. With an aging population and increasing prevalence of total joint replacement procedures, the burden of PJI will be felt not only by individual patients, but in increased healthcare costs. Current treatment of PJI is inadequate resulting in incredibly high failure rates.

View Article and Find Full Text PDF

Introduction: Many therapeutics are limited to parenteral administration. Oral administration is a desirable alternative because of the convenience and increased compliance by patients, especially for chronic diseases that require frequent administration. Polymeric nanoparticles (NPs) are one technology being developed to enable clinically feasible oral delivery.

View Article and Find Full Text PDF

Biologics increasingly are being used for the treatment of many diseases. These treatments typically require repeated doses administered by injection. Alternate routes of administration, particularly oral, are considered favorable because of improved convenience and compliance by patients, but physiological barriers such as extreme pH level, enzyme degradation, and poor intestinal epithelium permeability limit absorption.

View Article and Find Full Text PDF

Nanoparticles are poised to have a tremendous impact on the treatment of many diseases, but their broad application is limited because currently they can only be administered by parenteral methods. Oral administration of nanoparticles is preferred but remains a challenge because transport across the intestinal epithelium is limited. We show that nanoparticles targeted to the neonatal Fc receptor (FcRn), which mediates the transport of immunoglobulin G antibodies across epithelial barriers, are efficiently transported across the intestinal epithelium using both in vitro and in vivo models.

View Article and Find Full Text PDF

Taking a nanoparticle (NP) from discovery to clinical translation has been slow compared to small molecules, in part by the lack of systems that enable their precise engineering and rapid optimization. In this work we have developed a microfluidic platform for the rapid, combinatorial synthesis and optimization of NPs. The system takes in a number of NP precursors from which a library of NPs with varying size, surface charge, target ligand density, and drug load is produced in a reproducible manner.

View Article and Find Full Text PDF

Cisplatin and other DNA-damaging chemotherapeutics are widely used to treat a broad spectrum of malignancies. However, their application is limited by both intrinsic and acquired chemoresistance. Most mutations that result from DNA damage are the consequence of error-prone translesion DNA synthesis, which could be responsible for the acquired resistance against DNA-damaging agents.

View Article and Find Full Text PDF

Nanoparticle (NP) therapeutics have the potential to significantly alter the in vivo biological properties of the pharmaceutically active agents that they carry. Here we describe the development of a polymeric NP, termed M-NP, comprising poly(D,L-lactic-co-glycolic acid)-block-poly(ethylene glycol) (PLGA-PEG), stabilized with poly(vinyl alcohol) (PVA), and loaded with a water-soluble platinum(IV) [Pt(IV)] prodrug, mitaplatin. Mitaplatin, c,c,t-[PtCl2(NH3)2(OOCCHCl2)2], is a compound designed to release cisplatin, an anticancer drug in widespread clinical use, and the orphan drug dichloroacetate following chemical reduction.

View Article and Find Full Text PDF

Aim: Two unexplored aspects for irinotecan and cisplatin (I&C) combination chemotherapy are: actively targeting both drugs to a specific diseased cell type, and delivering both drugs on the same vehicle to ensure their synchronized entry into the cell at a well-defined ratio. In this work, the authors report the use of targeted polymeric nanoparticles (NPs) to coencapsulate and deliver I&C to cancer cells expressing the prostate-specific membrane antigen.

Materials & Methods: Targeted NPs were prepared in a single step by mixing four different precursors inside microfluidic devices.

View Article and Find Full Text PDF

Nanoparticles as drug delivery systems enable unique approaches for cancer treatment. Over the last two decades, a large number of nanoparticle delivery systems have been developed for cancer therapy, including organic and inorganic materials. Many liposomal, polymer-drug conjugates, and micellar formulations are part of the state of the art in the clinics, and an even greater number of nanoparticle platforms are currently in the preclinical stages of development.

View Article and Find Full Text PDF

Nanotechnology has the potential to impact the treatment of cancer significantly. This review will explore how this potential is beginning to be realized through the design of polymeric nanoparticle delivery systems. Current research is focused on developing biocompatible nanoparticles capable of targeting specific cancer markers and delivering imaging and therapeutic agents for the detection and treatment of cancer, resulting in a number of preclinical and clinical applications.

View Article and Find Full Text PDF

Cells are inherently robust to environmental perturbations and have evolved to recover readily from short-term exposure to heat, pH changes, and nutrient deprivation during times of stress. The stress of unfolded protein accumulation has been implicated previously in low protein yields during heterologous protein expression. Here we describe the dynamics of the response to this stress, termed the unfolded protein response (UPR), during the expression of the single chain antibody 4-4-20 (scFv) in Saccharomyces cerevisiae.

View Article and Find Full Text PDF