Transmitter release in neurons is triggered by intracellular Ca2+ increase via the opening of voltage-gated Ca2+ channels. Here we investigated the voltage-gated Ca2+ channels in wide-field amacrine cells (WFACs) isolated from the white-bass retina that are functionally coupled to transmitter release. We monitored transmitter release through the measurement of the membrane capacitance (Cm).
View Article and Find Full Text PDFThe modulatory action of calcium (Ca2+) released from intracellular stores on GABAA receptor-mediated current was investigated in wide-field amacrine cells isolated from the teleost, Morone chrysops, retina. Caffeine, ryanodine or inositol 1,4,5-triphosphate (IP3) markedly inhibited the GABAA current by elevating [Ca2+]i. The inhibition resulted from the activation of a Ca2+--> Ca2+/calmodulin --> calcineurin cascade.
View Article and Find Full Text PDFCalcium plays an integral role in intracellular signaling and process control in neurons. In the outer retina, it is a key component to the phototransduction cycle and neurotransmitter release in photoreceptor and bipolar cell terminals. It also contributes to the responses of horizontal and bipolar cells.
View Article and Find Full Text PDFParticular types of amacrine cells of the vertebrate retina show oscillatory membrane potentials (OMPs) in response to light stimulation. Historically it has been thought the oscillations arose as a result of circuit properties. In a previous study we found that in some amacrine cells, the ability to oscillate was an intrinsic property of the cell.
View Article and Find Full Text PDFCa2+ plays a key role in intracellular signal transduction in neurons but in excess it can lead to cell death. Thus its entry into cells is highly regulated by both extrinsic and intrinsic mechanisms. Little is known of the regulation of Ca2+ entry into retinal neurons.
View Article and Find Full Text PDFIn the retina, amacrine cells modulate the transfer of information from bipolar to ganglion cells. The nature of the modulation depends on the synaptic input and the membrane properties of the cells. In the retina of white bass, we identified a class of bistratified, wide-field amacrine cell characterized by immunopositive labelling for GABA and calmodulin.
View Article and Find Full Text PDF