Tissue Eng Part A
October 2024
Mechanical properties of biological cells have been shown to correlate with their biomolecular state and function, and therefore methods to measure these properties at scale are of interest. Emerging microfluidic technologies can measure the mechanical properties of cells at rates over 20,000 cells/s, which is more than four orders of magnitude faster than conventional instrumentation. However, precise and repeatable means to calibrate and test these new tools remain lacking, since cells themselves are by nature variable.
View Article and Find Full Text PDFCell Mol Bioeng
December 2022
Objective: The chondrogenic response of adipose-derived stem cells (ASCs) is often assessed using 3D micromass protocols that use upwards of hundreds of thousands of cells. Scaling these systems up for high-throughput testing is technically challenging and wasteful given the necessary cell numbers and reagent volumes. However, adopting microscale spheroid cultures for this purpose shows promise.
View Article and Find Full Text PDFCell encapsulation within hydrogel droplets is transforming what is feasible in multiple fields of biomedical science such as tissue engineering and regenerative medicine, in vitro modeling, and cell-based therapies. Recent advances have allowed researchers to miniaturize material encapsulation complexes down to single-cell scales, where each complex, termed a single-cell microgel, contains only one cell surrounded by a hydrogel matrix while remaining <100 μm in size. With this achievement, studies requiring single-cell resolution are now possible, similar to those done using liquid droplet encapsulation.
View Article and Find Full Text PDFCellular mechanophenotype is often a defining characteristic of conditions like cancer malignancy/metastasis, cardiovascular disease, lung and liver fibrosis, and stem cell differentiation. However, acquiring living cells based on mechanophenotype is challenging for conventional cell sorters due to a lack of biomarkers. In this study, we demonstrate a workflow for surface protein discovery associated with cellular mechanophenotype.
View Article and Find Full Text PDFExp Cell Res
September 2021
We determined the role of time in adipose-derived stem/stromal cell (ASC) response to a model inflammatory environment. ASCs and other mesenchymal stem/stromal cells exhibit immune plasticity. We evaluated the persistence of pro- and anti-inflammatory phenotypes for ASCs exposed to a sustained or pulse inflammatory stimulus.
View Article and Find Full Text PDFIntroduction: Antibodies are an essential research tool for labeling surface proteins but can potentially influence the behavior of proteins and cells to which they bind. Because of this, researchers and clinicians are interested in the persistence of these antibodies, particularly for live-cell applications. We developed an easily adoptable method for researchers to characterize antibody removal timelines for any cell-antibody combination, with the benefit of studying broad, hypothesized mechanisms of antibody removal.
View Article and Find Full Text PDFMechanical forces are an essential element to early tissue formation. However, few techniques exist that can quantify the mechanical microenvironment present within cell-dense neotissues and organoid structures. Here is a versatile approach to measure microscale, cellular forces during mesenchymal condensation using specially tailored, hyper-compliant microparticles (HCMPs).
View Article and Find Full Text PDFCell sorting is a powerful tool in basic research and therapeutic enrichment. However, common cell sorting methods, such as fluorescence-activated cell sorting (FACS) and magnetic-activated cell sorting (MACS) have significant limitations, such as generally low cell yields or restriction to binary separation, respectively. To address these limitations, we developed a two-step cell sorting method called mass-added density centrifugation (MADC) to enable nonbinary separation of large cell numbers based on surface protein levels.
View Article and Find Full Text PDFHere we demonstrate a technique to generate proteomic signatures of specific cell types within heterogeneous populations. While our method is broadly applicable across biological systems, we have limited the current work to study neural cell types isolated from human, post-mortem Alzheimer's disease (AD) and aged-matched non-symptomatic (NS) brains. Motivating the need for this tool, we conducted an initial meta-analysis of current, human AD proteomics studies.
View Article and Find Full Text PDFThe 2018 BMES Cellular and Molecular Bioengineering (CMBE) Conference was organized around the theme of Discovering the Keys: Transformative and Translational Mechanobiology. The conference programing included a panel discussion on Translating Mechanobiology to the Clinic. The goal of the panel was to initiate a dialog and share pearls of wisdom from participants' successes and failures in academia and in industry toward translating scientific discoveries in the field of mechanobiology to technology products in the market or toward devices or drugs that impact clinical care.
View Article and Find Full Text PDFThe synthesis of materials that can mimic the mechanical, and ultimately functional, properties of biological cells can broadly impact the development of biomimetic materials, as well as engineered tissues and therapeutics. Yet, it is challenging to synthesize, for example, microparticles that share both the anisotropic shapes and the elastic properties of living cells. Here, a cell-directed route to replicate cellular structures into synthetic hydrogels such as polyethylene glycol (PEG) is described.
View Article and Find Full Text PDFEfficient sorting methods are required for the isolation of cellular subpopulations in basic science and translational applications. Despite this, throughputs, yields, viabilities, and processing times of common sorting methods like fluorescence-activated cell sorting (FACS) and magnetic-activated cell sorting (MACS) are underreported. In the current study, we set out to quantify the ability of these sorting methods to separate defined mixtures of alkaline phosphatase liver/bone/kidney (ALPL)-expressing and non-expressing cell types.
View Article and Find Full Text PDFFront Cell Dev Biol
November 2018
Lamin A and lamin C isoforms of the gene are major structural and mechanotransductive components of the nuclear lamina. Previous reports have proposed lamin A as the isoform with the most dominant contributions to cellular mechanophenotype. Recently, expression of lamin C has also been shown to strongly correlate to cellular elastic and viscoelastic properties.
View Article and Find Full Text PDFMulticellular spheroids provide a physiologically relevant platform to study the microenvironment of tumors and therapeutic applications, such as microparticle-based drug delivery. The goal of this study was to investigate the incorporation/penetration of compliant polyacrylamide microparticles (MPs), into either cancer or normal human cell spheroids. Incorporation of collagen-1-coated MPs (stiffness: 0.
View Article and Find Full Text PDFIntroduction: Lamin proteins confer nuclear integrity and relay external mechanical cues that drive changes in gene expression. However, the influence these lamins have on whole-cell mechanical properties is unknown. We hypothesized that protein expression of lamins A, B1, and C would depend on the integrity of the actin cytoskeleton and correlate with cellular elasticity and viscoelasticity.
View Article and Find Full Text PDFA quick fabrication method for making double-walled (DW) polymeric nanospheres is presented. The process uses sequential precipitation of two polymers. By choosing an appropriate solvent and non-solvent polymer pair, and engineering two sequential phase inversions which induces first precipitation of the core polymer followed by precipitation of the shell polymer, DW nanospheres can be created instantaneously.
View Article and Find Full Text PDFSubstrate stiffness is known to alter cell behavior and drive stem cell differentiation, though most research in this area has been restricted to traditional, two-dimensional culture systems rather than more physiologically relevant, three-dimensional (3D) platforms. In this study, we utilized polymer-based, cell mimicking microparticles (CMMPs) to deliver distinct, stable mechanical cues to human adipose derived stem cells in 3D spheroid culture to examine changes in adipogenic differentiation response and mechanophenotype. After 21 days of adipogenic induction, spheroids containing CMMPs (composite spheroids) stiffened in accordance with CMMP elasticity such that spheroids containing the stiffest, ~ 10 kPa, CMMPs were over 27% stiffer than those incorporating the most compliant, ~ 0.
View Article and Find Full Text PDFAdipose tissue contains a heterogeneous population of stromal vascular fraction (SVF) cells that work synergistically with resident cell types to enhance tissue healing. Ease of access and processing paired with therapeutic promise make SVF cells an attractive option for autologous applications in regenerative medicine. However, inherent variability in SVF cell therapeutic potential from one patient to another hinders prognosis determination for any one person.
View Article and Find Full Text PDFStem and non-stem cell behavior is heavily influenced by the surrounding microenvironment, which includes other cells, matrix, and potentially biomaterials. Researchers have been successful in developing scaffolds and encapsulation techniques to provide stem cells with mechanical, topographical, and chemical cues to selectively direct them toward a desired differentiation pathway. However, most of these systems fail to present truly physiological replications of the in vivo microenvironments that stem cells are typically exposed to in tissues.
View Article and Find Full Text PDFGene expression is used extensively to describe cellular characteristics and behaviors; however, most methods of assessing gene expression are unsuitable for living samples, requiring destructive processes such as fixation or lysis. Recently, molecular beacons have become a viable tool for live-cell imaging of mRNA molecules in situ. Historically, beacon-mediated imaging has been limited to fluorescence-based approaches.
View Article and Find Full Text PDFAccurately characterizing cellular subpopulations is essential for elucidating the mechanisms underlying normal and pathological biology. Isolation of specific cell types can be accomplished by labeling unique cell-associated proteins with fluorescent antibodies. Cell fixation is commonly used to prepare these samples and allow for long-term storage, but this poses challenges for subsequent protein analysis.
View Article and Find Full Text PDFMature chondrocytes in adult articular cartilage vary in number, size, and shape, depending on their depth in the tissue, location in the joint, and source species. Chondrocytes are the primary structural, functional, and metabolic unit in articular cartilage, the loss of which will induce fatigue to the extracellular matrix (ECM), eventually leading to failure of the cartilage and impairment of the joint as a whole. This brief review focuses on the functional and biomechanical studies of chondrocytes and articular cartilage, using microscopic imaging from optical microscopies to scanning probe microscopy.
View Article and Find Full Text PDF