Publications by authors named "Eric M Bennett"

Deep learning, aided by the availability of big data sets, has led to substantial advances across many disciplines. However, many scientific problems of practical interest lack sufficiently large datasets amenable to deep learning. Prediction of antibody viscosity is one such problem where deep learning methods have not yet been explored due to the relative scarcity of relevant training data.

View Article and Find Full Text PDF

Self-association governs the viscosity and solubility of therapeutic antibodies in high-concentration formulations used for subcutaneous delivery, yet it is difficult to reliably identify candidates with low self-association during antibody discovery and early-stage optimization. Here, we report a high-throughput protein engineering method for rapidly identifying antibody candidates with both low self-association and high affinity. We find that conjugating quantum dots to IgGs that strongly self-associate (pH 7.

View Article and Find Full Text PDF

Despite substantial technological advances in antibody library and display platform development, the number of approved biotherapeutics from displayed libraries remains limited. , 20-50% of peripheral B cells undergo a process of receptor editing, which modifies the variable and junctional regions of light chains to delete auto-reactive clones. However, antibody evolution relies primarily on interaction with antigen, with no in-built checkpoints to ensure that the selected antibodies have not acquired additional specificities or biophysical liabilities during the optimization process.

View Article and Find Full Text PDF

The approval of ado-trastuzumab emtansine (T-DM1) in HER2 metastatic breast cancer validated HER2 as a target for HER2-specific antibody-drug conjugates (ADC). Despite its demonstrated clinical efficacy, certain inherent properties within T-DM1 hamper this compound from achieving the full potential of targeting HER2-expressing solid tumors with ADCs. Here, we detail the discovery of PF-06804103, an anti-HER2 ADC designed to have a widened therapeutic window compared with T-DM1.

View Article and Find Full Text PDF
Article Synopsis
  • Antibody therapy requires careful balance of factors like binding affinity, biophysical traits, and immunogenicity risk to be effective.
  • High concentrations (>150 mg/ml) of antibodies are needed for subcutaneous dosing, but high viscosity at those concentrations can complicate delivery and manufacturing.
  • This study successfully optimized an anti-PDGF-BB antibody to increase its concentration from 80 mg/ml to over 160 mg/ml while keeping its binding affinity intact, by adjusting its surface charge properties and analyzing 40 unique variants for viscosity.
View Article and Find Full Text PDF

As the antibody drug conjugate (ADC) community continues to shift towards site-specific conjugation technology, there is a growing need to understand how the site of conjugation impacts the biophysical and biological properties of an ADC. In order to address this need, we prepared a carefully selected series of engineered cysteine ADCs and proceeded to systematically evaluate their potency, stability, and PK exposure. The site of conjugation did not have a significant influence on the thermal stability and in vitro cytotoxicity of the ADCs.

View Article and Find Full Text PDF

Antibodies (Abs) are a crucial component of the immune system and are often used as diagnostic and therapeutic agents. The need for high-affinity and high-specificity antibodies in research and medicine is driving the development of computational tools for accelerating antibody design and discovery. We report a diverse set of antibody binding data with accompanying structures that can be used to evaluate methods for modeling antibody interactions.

View Article and Find Full Text PDF

IRAK4 is responsible for initiating signaling from Toll-like receptors (TLRs) and members of the IL-1/18 receptor family. Kinase-inactive knock-ins and targeted deletions of IRAK4 in mice cause reductions in TLR induced pro-inflammatory cytokines and these mice are resistant to various models of arthritis. Herein we report the identification and optimization of a series of potent IRAK4 inhibitors.

View Article and Find Full Text PDF

hSMG-1 kinase plays a dual role in a highly conserved RNA surveillance pathway termed nonsense-mediated RNA decay (NMD) and in cellular genotoxic stress response. Since deregulation of cellular responses to stress contributes to tumor growth and resistance to chemotherapy, hSMG-1 is a potential target for cancer treatment. From our screening efforts, we have identified pyrimidine derivatives as hSMG-1 kinase inhibitors.

View Article and Find Full Text PDF

Dramatic improvements in mTOR-targeting selectivity were achieved by replacing morpholine in pyrazolopyrimidine inhibitors with bridged morpholines. Analogues with subnanomolar mTOR IC(50) values and up to 26000-fold selectivity versus PI3Kalpha were prepared. Chiral morpholines gave inhibitors whose enantiomers had different selectivity and potency profiles.

View Article and Find Full Text PDF

MbtA (a salicyl AMP ligase) is a key target for the design of new antitubercular agents. On the basis of structure-activity relationship (SAR) data generated in our laboratory, a structure-based model is developed to predict the binding affinities of aryl acid-AMP bisubstrate inhibitors of MbtA. The approach described takes advantage of the linear interaction energy (LIE) technique to derive linear equations relating ligand structure to function.

View Article and Find Full Text PDF

5'-O-[N-(salicyl)sulfamoyl]adenosine (Sal-AMS) is a prototype for a new class of antitubercular agents that inhibit the aryl acid adenylating enzyme (AAAE) known as MbtA involved in biosynthesis of the mycobactins. Herein, we report the structure-based design, synthesis, biochemical, and biological evaluation of a comprehensive and systematic series of analogues, exploring the structure-activity relationship of the purine nucleobase domain of Sal-AMS. Significantly, 2-phenyl-Sal-AMS derivative 26 exhibited exceptionally potent antitubercular activity with an MIC99 under iron-deficient conditions of 0.

View Article and Find Full Text PDF

A study of the structure-activity relationships of 5'-O-[N-(salicyl)sulfamoyl]adenosine (6), a potent inhibitor of the bifunctional enzyme salicyl-AMP ligase (MbtA, encoded by the gene Rv2384) in Mycobacterium tuberculosis, is described, targeting the salicyl moiety. A systematic series of analogues was prepared exploring the importance of substitution at the C-2 position revealing that a hydroxy group is required for optimal activity. Examination of a series of substituted salicyl derivatives indicated that substitution at C-4 was tolerated.

View Article and Find Full Text PDF

Novel tiazofurin adenine dinucleotide (TAD) analogues 25-33 containing a substituent at C2 of the adenine ring have been synthesized as inhibitors of the two isoforms of human IMP-dehydrogenase. The 2-ethyl TAD analogue 33 [Ki = 1 nM (type I), Ki = 14 nM (type II)] was found to be the most potent. It did not inhibit three other cellular dehydrogenases up to 50 microM.

View Article and Find Full Text PDF

Bifunctional inhibitors were designed and synthesized based on 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine (HEPT)a1 non-nucleoside reverse transcriptase (RT) inhibitors and diketoacid (DKA) integrase (IN) inhibitors. Biochemical studies revealed activity against RT and IN at low nanomolar and low micromolar concentrations, respectively. Exceptionally low IC50 values from a cell-based assay were achieved along with remarkably high therapeutic indices.

View Article and Find Full Text PDF

The chemical synthesis of 4-phenoxybenzamide adenine dinucleotide (3), a NAD analogue which mimics isoniazid-NAD adduct and inhibits Mycobacterium tuberculosis NAD-dependent enoyl-ACP reductase (InhA), is reported. The 4-phenoxy benzamide riboside (1) has been prepared as a key intermediate, converted into its 5'-mononucleotide (2), and coupled with AMP imidazolide to give the desired NAD analogue 3. It inhibits InhA with IC50 = 27 microM.

View Article and Find Full Text PDF

The design, synthesis and biochemical characterization of a mechanism-based aryl carrier protein (ArCP) affinity probe that selectively modifies the terminal thiol of the aryl carrier protein phosphopantethein (Ppant) prosthetic group is described. Labeling of the aryl carrier protein was shown to require the cognate adenylating enzyme to channel the affinity probe onto the Ppant cofactor. The selective labeling was established by observation of the phosphopantetheinyl ejection ion via MS/MS and the probe was also found to stabilize an interaction between an aryl carrier protein and adenylating enzyme by an electrophoretic mobility shift assay.

View Article and Find Full Text PDF

A methylenebis(sulfonamide) linked NAD analogue has been designed to circumvent the metabolically unstable, ionic nature of the natural pyrophosphate linkage. This NAD analogue is assembled through two Mitsunobu reactions of a methylenebis(sulfonamide) linker with two protected nucleosides. A 2,4-dimethoxybenzyl group is used as a sulfonamide protective group, which allows facile removal under mildly acidic conditions.

View Article and Find Full Text PDF

Tuberculosis is the leading cause of infectious disease mortality in the world by a bacterial pathogen. We previously demonstrated that a bisubstrate inhibitor of the adenylation enzyme MbtA, which is responsible for the second step of mycobactin biosynthesis, exhibited potent antitubercular activity. Here we systematically investigate the structure-activity relationships of the bisubstrate inhibitor glycosyl domain resulting in the identification of a carbocyclic analogue that possesses a KIapp value of 2.

View Article and Find Full Text PDF

[reaction: see text] The antitubercular nucleoside antibiotics 1 and 2 were recently described that inhibit the adenylate-forming enzyme MbtA and disrupt biosynthesis of the virulence-conferring siderophore known as mycobactin in Mycobacterium tuberculosis. Herein, we report efforts to refine this inhibitor scaffold by replacing the labile acylsulfamate linkage (highlighted) with the more chemically robust beta-ketosulfonamide linkage of 3 and 4.

View Article and Find Full Text PDF

A rationally designed nucleoside inhibitor of Mycobacterium tuberculosis growth (MIC(99) = 0.19 microM) that disrupts siderophore biosynthesis was identified. The activity is due to inhibition of the adenylate-forming enzyme MbtA which is involved in biosynthesis of the mycobactins.

View Article and Find Full Text PDF

Formylglycinamide ribonucleotide amidotransferase (FGAR-AT) catalyzes the conversion of formylglycinamide ribonucleotide (FGAR), ATP, and glutamine to formylglycinamidine ribonucleotide (FGAM), ADP, P(i), and glutamate in the fourth step of the purine biosynthetic pathway. PurL exists in two forms: large PurL (lgPurL) is a single chain, multidomain enzyme of about 1300 amino acids, whereas small PurL (smPurL) contains about 800 amino acids but requires two additional gene products, PurS and PurQ, for activity. smPurL contains the ATP and FGAR binding sites, PurQ is a glutaminase, and the function of PurS is just now becoming understood.

View Article and Find Full Text PDF

Activation of prodrugs by Escherichia coli purine nucleoside phosphorylase (PNP) provides a method for selectively killing tumor cells expressing a transfected PNP gene. This gene therapy approach requires matching a prodrug and a known enzymatic activity present only in tumor cells. The specificity of the method relies on avoiding prodrug cleavage by enzymes already present in the host cells or the intestinal flora.

View Article and Find Full Text PDF

The structure of YaaE from Bacillus subtilis was determined at 2.5-A resolution. YaaE is a member of the triad glutamine aminotransferase family and functions in a recently identified alternate pathway for the biosynthesis of vitamin B(6).

View Article and Find Full Text PDF