Publications by authors named "Eric Loth"

Surface fouling from coagulated blood is a major challenge in medical industry. However, the wetting physics and dynamics of blood on surfaces are not well understood nor are the quantitative influences due to surface and fluid properties. The present study investigates the effect of surface wetting and dynamics resulting for human blood and plasma, namely hemophobicity, on surfaces with different wettability.

View Article and Find Full Text PDF

Insect residue adhesion to moving surfaces such as turbine blades and aircraft not only causes surface contamination problems but also increases drag on these surfaces. Insect fouling during takeoff, climb and landing can result in increased drag and fuel consumption for aircraft with laminar-flow surfaces. Hence, certain topographical and chemical features of non-wettable surfaces need to be designed properly for preventing insect residue accumulation on surfaces.

View Article and Find Full Text PDF

Large majority of superhydrophobic surfaces have very limited mechanical wear robustness and long-term durability. This problem has restricted their utilization in commercial or industrial applications and resulted in extensive research efforts on improving resistance against various types of wear damage. In this review, advances and developments since 2011 in this field will be covered.

View Article and Find Full Text PDF

Superhydrophobic nanotextured surfaces have gained increased usage in various applications due to their non-wetting and self-cleaning abilities. The aim of this study was to investigate nanotextured surfaces with respect to their resistance to the inception of freshwater biofouling at transitional flow conditions. Several coatings were tested including industry standard polyurethane (PUR), polytetrafluoroethylene (PTFE), capstone mixed polyurethane (PUR + CAP) and nanocomposite infused polyurethane (PUR + NC).

View Article and Find Full Text PDF

Recent studies have shown the potential of water-repellent surfaces such as superhydrophobic surfaces in delaying ice accretion and reducing ice adhesion. However, conflicting trends in superhydrophobic ice adhesion strength were reported by previous studies. Hence, this investigation was performed to study the ice adhesion strength of hydrophobic and superhydrophobic coatings under realistic atmospheric icing conditions, i.

View Article and Find Full Text PDF

This study presents a new factor that can be used to design materials where desired surface properties must be retained under in-system wear and abrasion. To demonstrate this factor, a synthetic nonwetting coating is presented that retains chemical and geometric performance as material is removed under multiple wear conditions: a coarse vitrified abradant (similar to sanding), a smooth abradant (similar to rubbing), and a mild abradant (a blend of sanding and rubbing). With this approach, such a nonwetting material displays unprecedented mechanical durability while maintaining desired performance under a range of demanding conditions.

View Article and Find Full Text PDF

Receding angles have been shown to have great significance when designing a superhydrophobic surface for applications involving self-cleaning. Although apparent receding angles under dynamic conditions have been well studied, the microscopic receding contact line dynamics are not well understood. Therefore, experiments were performed to measure these dynamics on textured square pillar and irregular superhydrophobic surfaces at micron length scales and at micro-second temporal scales.

View Article and Find Full Text PDF

Due to its potential in water-repelling applications, the impact and rebound dynamics of a water drop impinging perpendicular to a horizontal superhydrophobic surface have undergone extensive study. However, drops tend to strike a surface at an angle in applications. In such cases, the physics governing the effects of oblique impact are not well studied or understood.

View Article and Find Full Text PDF

A method to reduce the surface roughness of a spray-casted polyurethane/silica/fluoroacrylic superhydrophobic nanocomposite coating was demonstrated. By changing the main slurry carrier fluid, fluoropolymer medium, surface pretreatment, and spray parameters, we achieved arithmetic surface roughness values of 8.7, 2.

View Article and Find Full Text PDF

Innovative technological advancements in the field of orthotics, such as portable powered orthotic systems, could create new treatment modalities to improve the functional out come of rehabilitation. In this article, we present a novel portable powered ankle-foot orthosis (PPAFO) to provide untethered assistance during gait. The PPAFO provides both plantar flexor and dorsiflexor torque assistance by way of a bidirectional pneumatic rotary actuator.

View Article and Find Full Text PDF

Background: A self-contained, self-controlled, pneumatic power harvesting ankle-foot orthosis (PhAFO) to manage foot-drop was developed and tested. Foot-drop is due to a disruption of the motor control pathway and may occur in numerous pathologies such as stroke, spinal cord injury, multiple sclerosis, and cerebral palsy. The objectives for the prototype PhAFO are to provide toe clearance during swing, permit free ankle motion during stance, and harvest the needed power with an underfoot bellow pump pressurized during the stance phase of walking.

View Article and Find Full Text PDF

We describe a technique to fabricate, for the first time, superoleophobic coatings by spray casting nanoparticle-polymer suspensions. The method involves the use of ZnO nanoparticles blended with a waterborne perfluoroacrylic polymer emulsion using cosolvents. Acetone is shown to be an effective compatibilizing cosolvent to produce self-assembling nanocomposite slurries that form hierarchical nanotextured morphology upon curing.

View Article and Find Full Text PDF