Introduction: The use of synthetic data in pathology has, to date, predominantly been augmenting existing pathology data to improve supervised machine learning algorithms. We present an alternative use case-using synthetic images to augment cytology training when the availability of real-world examples is limited. Moreover, we compare the assessment of real and synthetic urine cytology images by pathology personnel to explore the usefulness of this technology in a real-world setting.
View Article and Find Full Text PDFIntroduction: Urine cytology offers a rapid and relatively inexpensive method to diagnose urothelial neoplasia. In our setting of a public sector laboratory in South Africa, urothelial neoplasia is rare, compromising pathology training in this specific aspect of cytology. Artificial intelligence-based synthetic image generation-specifically the use of generative adversarial networks (GANs)-offers a solution to this problem.
View Article and Find Full Text PDF