Publications by authors named "Eric Lebon"

Background And Aims: Scaling from single-leaf to whole-canopy photosynthesis faces several complexities related to variations in light interception and leaf properties. To evaluate the impact of canopy strucuture on gas exchange, we developed a functional-structural plant model to upscale leaf processes to the whole canopy based on leaf N content. The model integrates different models that calculate intercepted radiation, leaf traits and gas exchange for each leaf in the canopy.

View Article and Find Full Text PDF

Plants evolved different strategies to cope with water stress. While isohydric species maintain their midday leaf water potential (Ψ) under soil water deficit by closing their stomata, anisohydric species maintain higher stomatal aperture and exhibit substantial reductions in Ψ It was hypothesized that isohydry is related to a locally higher sensitivity of stomata to the drought-hormone abscisic acid (ABA). Interestingly, recent lines of evidence in Arabidopsis () suggested that stomatal responsiveness is also controlled by an ABA action on leaf water supply upstream from stomata.

View Article and Find Full Text PDF

Increasing water scarcity challenges crop sustainability in many regions. As a consequence, the enhancement of transpiration efficiency (TE)-that is, the biomass produced per unit of water transpired-has become crucial in breeding programs. This could be achieved by reducing plant transpiration through a better closure of the stomatal pores at the leaf surface.

View Article and Find Full Text PDF

Modelling the spatial and temporal distribution of leaf nitrogen (N) is central to specify photosynthetic parameters and simulate canopy photosynthesis. Leaf photosynthetic parameters depend on both local light availability and whole-plant N status. The interaction between these two levels of integration has generally been modelled by assuming optimal canopy functioning, which is not supported by experiments.

View Article and Find Full Text PDF

In the face of water stress, plants evolved with different abilities to limit the decrease in leaf water potential, notably in the daytime (ΨM). So-called isohydric species efficiently maintain high ΨM, whereas anisohydric species cannot prevent ΨM from dropping as soil water deficit develops. The genetic and physiological origins of these differences in (an)isohydric behaviours remain to be clarified.

View Article and Find Full Text PDF

The stomatal control of transpiration is one of the major strategies by which plants cope with water stress. Here, we investigated the genetic architecture of the rootstock control of scion transpiration-related traits over a period of 3 yr. The rootstocks studied were full sibs from a controlled interspecific cross (Vitis vinifera cv.

View Article and Find Full Text PDF

Understanding the distribution of gas exchange within a plant is a prerequisite for scaling up from leaves to canopies. We evaluated whether leaf traits were reliable predictors of the effects of leaf ageing and leaf irradiance on leaf photosynthetic capacity (V(cmax) , J(max) ) in field-grown vines (Vitis vinifera L). Simultaneously, we measured gas exchange, leaf mass per area (LMA) and nitrogen content (N(m) ) of leaves at different positions within the canopy and at different phenological stages.

View Article and Find Full Text PDF

The effect of trophic competition between vegetative sources and reproductive sinks on grapevine (Vitis vinifera L.) shoot development was analyzed. Two international cultivars (Grenache N and Syrah) grown in pots, which were well watered, were studied.

View Article and Find Full Text PDF

Background And Aims: In grapevine, canopy-structure-related variations in light interception and distribution affect productivity, yield and the quality of the harvested product. A simple statistical model for reconstructing three-dimensional (3D) canopy structures for various cultivar-training system (C x T) pairs has been implemented with special attention paid to balance the time required for model parameterization and accuracy of the representations from organ to stand scales. Such an approach particularly aims at overcoming the weak integration of interplant variability using the usual direct 3D measurement methods.

View Article and Find Full Text PDF

Background And Aims: Plant architecture and its interaction with agronomic practices and environmental constraints are determinants of the structure of the canopy, which is involved in carbon acquisition and fruit quality development. A framework for the quantitative analysis of grapevine (Vitis vinifera) shoot architecture, based on a set of topological and geometrical parameters, was developed for the identification of differences between cultivars and the origins of phenotypic variability.

Methods: Two commercial cultivars ('Grenache N', 'Syrah') with different shoot architectures were grown in pots, in well-irrigated conditions.

View Article and Find Full Text PDF

Background And Aims: Soil water deficit is a major abiotic stress with severe consequences for the development, productivity and quality of crops. However, it is considered a positive factor in grapevine management (Vitis vinifera), as it has been shown to increase grape quality. The effects of soil water deficit on organogenesis, morphogenesis and gas exchange in the shoot were investigated.

View Article and Find Full Text PDF

Background And Aims: Shoot architecture variability in grapevine (Vitis vinifera) was analysed using a generic modelling approach based on thermal time developed for annual herbaceous species. The analysis of shoot architecture was based on various levels of shoot organization, including pre-existing and newly formed parts of the stem, and on the modular structure of the stem, which consists of a repeated succession of three phytomers (P0-P1-P2).

Methods: Four experiments were carried out using the cultivar 'Grenache N': two on potted vines (one of which was carried out in a glasshouse) and two on mature vines in a vineyard.

View Article and Find Full Text PDF

A geometrical canopy model describing radiation absorption (Riou et al. 1989, Agronomie 9, 441-450) and partitioning between grapevines (Vitis vinifera L.) and soil was coupled to a soil water balance routine describing a bilinear change in relative transpiration rate as a function of the fraction of soil transpirable water (FTSW).

View Article and Find Full Text PDF